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BILATTICES AND THE THEORY OF TRUTH

1. INTRODUCTION

Kripke {13], and independently Martin and Woodruff [14], introduced
the fixed point approach as a solution to the problem of assigning
truth values to sentences in a language that allowed self-reference,
and hence that allowed paradoxical sentences. Crucial to this was the
use of a three-valued logic; some sentences must be left lacking a
classical truth value, or having the truth value ‘underdetermined’.
More recently this approach has been extended [17], [18] to use a
four-valued logic due to Belnap [2], with a fourth truth value of ‘over-
determined’. Moving from a three to a four-valued logic simplifies the
mathematics, since we now have a complete lattice instead of a com-
plete semi-lattice to work with. It loses none of the original insights,
since Kleene’s strong three-valued logic is a natural sublogic of
Belnap’s. And it makes possible a treatment that has its own intuitive
satisfications. After all, a sentence asserting its own falsehood could
be taken to be overdetermined as well as underdetermined.

In the fixed point approach, some fixed points are more significant
than others. In Kripke’s version one is most interested in the ‘least’
fixed point, where the underlying ordering is one that treats the lack
of a classical truth value as ‘less than’ the possession of one. In the
four-valued approach this ordering is extended to count having a
classical truth value as ‘less than’ being overdetermined. It turns out
that this ordering meshes well with the usual logical connectives and
quantifiers (suitably modified to take the four values into account).
What one needs is that the ordering and the connectives interact in
ways that ‘respect’ the order relation, and this is indeed the case.

Ginsberg has introduced into computer science a family of algebraic
structures under the general name bilattice ([8], [9]). A bilattice can be
thought of as a generalized truth value space. In any bilattice there
are analogs of the classical logical connectives, and analogs of the
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ordering relation mentioned above, and the interaction between them
is of the kind necessary for a fixed-point theory to be developed.
Indeed, the simplest bilattice is just the four-valued logic of Belnap.
What is more, a bilattice structure is behind many other naturally
occurring examples, such as modal versions based on Kripke models.
Finally, there is a general technique for constructing a bilattice, start-
ing with any ‘reasonable’ space of truth values.

In this paper we first present several concrete examples of bilattices,
and discuss them in some detail. Then we present the general notion
of bilattice, and establish the basic results concerning it. Next we
show that a Kripke-like development can be given uniformly for a
whole family of bilattices meeting certain simple conditions. Finally
we show an interesting result relating the various extremal fixed
points that one obtains in the bilattice setting; and in Belnap’s four
valued logic as a particular example. This is a result whose very state-
ment would be impossible without the bilattice machinery.

We note that there are close relationships between techniques
developed for dealing with the formal concept of truth, and those
suitable for the semantics of logic programming in computer science.
Heretofore the crossover has been in the direction of computer
science; see [4]. This time the movement is the other way. The results
here were originally developed in the logic programming setting (see
[7]) and then transferred to this area. This relationship holds promise
of further enrichment of both fields.

2. THE FOUR VALUED CASE

Let L be a first-order language with connectives A, v and —1, and
quantifiers V and 3, and that includes notation for elementary arith-
metic. We will always interpret the operators, constant symbols and
relation symbols of arithmetic in the standard way. The point of
including arithmetic is so that L can code its own syntax. Any other
suitable mechanism for this purpose’ could be used as well. In addition
to the technical incorporation of arithmetic we also assume L has
atomic sentences that we can think of as being about the real world,
such as, it is raining at place a at time b. We use R for the class of
these atomic sentences. Incidentally, we use the term sentence to mean
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closed formula. 1t is only sentences that we will be interested in here.
Next, we assume L has ‘names’ for all objects we wish to talk about,
and so we can think of quantification substitutionally. (This is a con-
venience, not a necessity.) We use D for the collection of these names.
Finally, we assume L contains a predicate Tr, and we will want to
think of Tr(" X 7) as asserting the truth of sentence X. (We use "X
for the Godel number of X, so Tr is technically a predicate of
numbers.)

If the atomic sentences of R are assigned truth values that accord
with the real world, and atomic arithmetic sentences are interpreted in
the standard way, there remains the problem of interpreting Tr so
that Tr("X ™) will be true exactly when the sentence X is true. Since
we have sufficient machinery to construct a sentence that asserts its
own falsehood, the task is impossible by Tarski’s Theorem. But if Tr
were given a partial interpretation (it is true on some integers, false on
some, and underdetermined on some) the problem could be avoided.
What Kripke, and Martin and Woodruff, showed was that this could
be done in a way that was both clean and plausible. We will not repeat
the details here, but simply refer to [13], [14] and incidentally [5].

Now, suppose L is the language of person P. This person, wishing
to carry out Kripke’s program (blithely ignoring the program’s non-
constructive aspects) is faced with an immediate problem: how does
one ascertain the truth of sentences in R, about the real world? Much
of what we ‘know’ is really quite uncertain knowledgé. But, for the
purposes of Kripke’s construction, this is a non-issue. All that matters
is that classical truth values be assigned to members of R. Whether or
not these truth values accurately reflect reality (whatever this means)
plays no role. So we might imagine a scenario like this.

Person P is in a cave and cannot see the outside world. But just
outside the cave there is a real-world expert who, from time to time,
shouts in to person P some sentence about the outside world such as,
“It is raining in Detroit, now.” Person P accepts these assertions as
correct, and assigns truth values to sentencés of R accordingly. Since
R may have infinitely many sentences, at any given time there may be
members of R that have not acquired a truth .value by this process.
They are given the value underdetermined. At any rate, Kripke’s
mechanism still applies, and a meaningful partial truth assignment to
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Tr, and hence to all sentences of L can still be characterized in terms
of a least fixed point model. Instead of ‘real-world truth’, we are now
talking about ‘truth as P understands it.” Incidentally, it can be
shown that as time passes, and P’s expert continues to call out more
assertions about the outside world, and the interpretation of Tr is
recalculated, nothing ever needs to be retracted. That is, if Tr(TX7) is
true (or false) today, it will still come out true (or false) tomorrow, no
matter what additional information P’s expert supplies. This assumes
that the expert never takes back or contradicts an earlier assertion,
but only adds new ones.

Now consider a situation a little more like the one we generally find
ourselves in. P is still in the cave, but this time there are several
experts outside, shouting information. It is enough to consider the
case of two experts, say 4 and B; the general case adds no new com-
plications. What if 4 shouts, “It is raining in Detroit now”, while B
shouts ““It is not raining in Detroit now.” Clearly P has a problem.
There are two simple courses of action that P could take, assuming P
cannot call back to 4 and B. First, P could decide to insist on a
consensus on this issue, and since 4 and B have disagreed, the
sentence “It is raining in Detroit now” is given no truth value (or
given the value undetermined or 1). Second, P could decide that an
expert’s opinion should be accepted no matter what, and so “It is
raining in Detroit now” is taken to be both true and false (or given
the truth value overdetermined or T). Having L as a truth value is
sometimes referred to as having a truth value gap. In the same way,
having T as a truth value is sometimes referred to as having a truth
value glut. At any rate, what formal sense can be made of this new
truth value?

Belnap, in [2], proposed a four valued logic, which we will call
F OUR, that is quite appealing, and we recommend his paper highly.
(See also [17].) One can think of Belnap’s truth values as sets of truth
values in the ordinary sense, an idea originating in [3]. Then the four
truth values of # OUR are: {true}, which we will write simply as true;
{ false}, which we will write as false; {}, which we will write as L and
read as underdetermined; and {true, false}, which we will write as T
and read as overdetermined.

In a sense, this four valued logic is quite ancient. Once, the
Venerable Malunkyaputta, a disciple of the Buddha, asked for
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Fig. 1. The logic #OUA.

information on several subjects which he thought to be of importance,
and about which the Buddha had not spoken. One of them was the
existence of the soul, and the question was: whether it existed; whether
it did not exist; whether it neither existed nor did not exist; whether it
both existed and did not exist. This is clearly Belnap’s logic anticipated
and applied. For another pertinent example consider the following,
from Madhyamika Karika, chapter 18, verse 8, quoted in [15], page
316: “Everything is true; not everything is true; both, everything is
true, and not everything is true; or, neither everything is true nor is
everything not true. This is the teaching of the Buddha.”

The four truth values can be given some natural mathematical
structure in a simple way. We follow ideas explicit in [8] and [9] which
were implicit in [2]. We wish to give the space & 0% % two partial
orderings, denoted <, and <,. We represent these in a double Hasse
diagram in Figure 1.

Thus a <, b if there is an ‘uphill’ path from a to b. For example,
1 <, false. And a <, b if there is a ‘left-right’ path from a to b. For
example, false <, L. Very informally, the intuition is this. <,
represents an increase in ‘truth’ or a decrease in ‘falseness’. Thus
false <, 1 because in going from { false} to {} the degree of falseness
has decreased. Likewise L <, true because in going from {} to {true}
the degree of truth has gone up. <, represents an increase in
‘knowledge’. Thus L <, false because in gding from {} to { false} our
knowledge has gone from no information to the assignment of the
truth-value false. And so on.

Under both partial orderings <, and <,, we have a lattice (indeed,
a complete one) and so meets and joins exist for both orderings.
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We use the notation: A and v for finite meet and join respectively
under the <, ordering; /\ and \/ for arbitrary meet and join under
this ordering; ® and @ for finite meet and join under the <, order-
ing; and IT and X for arbitrary meet and join under this ordering.
Finally, we can define negation in a reasonable way: —true = false;
—false = true; L = 1;T =T.

It is easy to check that the operations A, v and —, restricted to
the two values frue and false, are the usual classical logic operations.
Further, when restricted to true, false and L, they are the operations
of Kleene’s strong three valued logic [10].

Finally, we mentioned earlier P’s two possible approaches to con-
flicting information: insist on consensus, or accept anything. It is easy
to see that the consensus approach amounts to combining truth
values using ®, while the accept anything version combines truth
values by using @. Thus we have all the underlying machinery
necessary to make formal sense of P’s situation.

As starters on the technical machinery we can set up mappings .%,
and ., corresponding to experts 4 and B, as follows. For each
sentence X in R, let

true if A says X is true
F(X) = ( false if A says X is false
1 otherwise _

and similarly for B. Next we can merge these in accordance with P’s

intentions, as follows. For a sentence X in R, if P has decided to

require consensus on X, set F(X) = £,(X) ® £H(X), and if P is

willing to accept any expert opinion, set £(X) = £,(X) @ £H(X).
By a valuation we mean a mapping v from sentences of L to

F OUR that meets the following conditions.

1. v makes the truth functional connectives correspond to
the operations A, v and —1 of #FO%®R; that is,
(X A Y) = v(X) A" ov(Y), and so on, and

2. (V0)0(x)) = Nipv(@(@)); 2(EX)(x) =\/ spv(@(d)).

As is the case in classical logic, so too here, valuations are completely
determined by their behavior at the atomic level. This is simple to verify.
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Suppose we (metaphorically) call a valuation v realistic if, for each
X in R, v(X) = #(X), and for each atomic sentence of arithmetic, v
assigns truth values in accordance with the standard model. We
can partially order these realistic valuations (or for that matter, all
valuations) as follows: v <, wif v(X) <, w(X) for each atomic
sentence X. (<, extends similarly.) It is not hard to verify that <,
makes the set of realistic valuations into a complete lattice (also true
for <,), and also if v <, w then v(X) <, w(X) for every sentence of
L, not just for atomic ones (not true for <, because of the behaviour
of negation). The smallest realistic valuation in the <, ordering, v,,
has the property that vo(Tr("X 7)) = L for all X.

Following Kripke, we define a mapping ® from valuations to
valuations. For a valuation v, ®(v) = w where w is the valuation
whose atomic behavior is specified as follows.

1. if X is an arithmetic sentence, w(X) is the truth value of
X in the standard model;

2. if XeR, wX) = F(X);

3. w(Tr("X")) = o(X).

Now one can show that ® maps realistic valuations to realistic
valuations. Also @ is monotone in <,: v <, w = ®(v) <, D(w). This
means the well-known Knaster-Tarski Theorem can be applied. This
theorem states that a monotone mapping on a complete lattice has a
smallest (and a biggest) fixed point, and indeed the set of all fixed
points constitutes another complete lattice [16]. There are many places
where proofs of some version of the theorem can be found. One that
is readily available is [1] page 197. So, in our case, it follows by the
Knaster—Tarski Theorem that ® has a smallest fixed point, and it is
this that we take as supplying the semantics for L. It is the ‘intended’
model for L, reflecting person P’s ‘knowledge’ about the outside
world. Thus we use the ordering <, in #O%% to provide meanings
for the logical connectives and quantifiers, But we minimize in the <,
ordering.

Proofs of our assertions are postponed until Sections 4 and 5. We
note however that the following items will be established, and are of
interest here. Let v, be the smallest fixed point of @ in the <, ordering.
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1. We have a proper generalization of Kripke’s work in
the following sense. If persons 4 and B always agree,
then v, will never take on the value T, and in fact will
be identical with the three-valued least fixed point
produced by Kripke’s original methods.

2. v, is monotone in time. That is, as time passes, persons
A and B may announce truth values for sentences of R
that they had not previously spoken about. Assuming
they never retract or contradict anything they them-
selves said earlier, the result will be to increase v,. That
is, if of is the least fixed point of @ calculated at a later
time, then v, <, v¥. Thus no earlier ‘knowledge’ is
reversed as time passes, provided there is no reversal at
the ‘real-world’ level.

3. A MODAL EXTENSION

Before we turn to the full bilattice generalization, we consider a direct
extension of the more-or-less classical situation treated in the previous
section. Kripke, in [13], remarked that his construction carried over to
models based on modal logic ([11], [12]). Here we look more closely
at this assertion. We only consider so-called constant domain Kripke
models. These are the models in which the Barcan formula is valid.
Models with non-constant domains can also be treated by the methods
below, by using the following simple device. Introduce an extra pre-
dicate, E(x), whose intended interpretation is: E(d) is true at a world
I' if d is in the domain we want to associate with I'. That is, E is an
existence predicate. Then relativize all quantifiers to E. This amounts
to an embedding of variable domain semantics into constant domain
semantics. But for simplicity, for the rest of this section we assume L
is a first order language, like the one used in the previous section, but
with the incorporation of the usual'model operators O and $; we
continue to use D for the set of constants of L, and we assume D is
the domain of quantification for each world of our Kripke modal
model.
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DEFINITION 3.1. A Kripke model with constant domains is a tuple
{9, R, k>, where ¥ is a non-empty set (of possible worlds), £ is a
binary relation on ¢ (of accessibility), and F is a relation between
members of  and sentences of L. We assume the following con-
ditions are met: for every I' € 4

FrE XeTIkX
Fr'FXAY<TEFEXandTEFY
FreEXvYesTlEXorTFY
I'E(Wx)p(x) =T Fo(d)foralldeD
I' E @Ax)p(x) < T k @(d) for some de D

FEOX < foral AwithT#A, AF X

I E OX <« for some A with TZA, A E X.

In the definition above we intended F to mean the same as not-F.
But now suppose we generalize the situation by assuming we have two
independent relations, F and F, each of which behaves in the expected
way. More precisely,

DEFINITION 3.2. By a generalized Kripke model we mean a tuple
{¥%, R, E, > obeying the following conditions.

F'E—X<notl'FX
FrEXAY<TFXandTEY
Fr'EXvYeTlEXorTFY

ITF'EWx)e(x)<>T k ¢p(d)forallde D
I'E @x)e(x) < T F ¢(d) forsome de D
I' E OX <> for all A with T'ZA, AEX

I'kE OX < forsome AwithT#A, AF X
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F'F X<entlNfk X
Fr'FXAY<eTFXorTFY
FrgXvYeTfXandTFY

I' ¥ (Vx)e(x) < T Fo(d) for some de D

I'¥ @x)p(x) T Fo(d)forallde D
I' ¥ OX < for some A with T'@A, A X
FfFoOX<forall AwithT#RA AF X

Then, if we have neither I F X nor I ff X we can think of X as being
underdetermined, or having the truth value 1 at I'. Likewise if we
have both I" F X and T" f X we can think of X as being overdeter-
mined, or having the truth value T at I".

But there are other ways of bringing truth values into the picture.
Often the set of worlds at which a sentence holds is taken to be a
kind of generalized truth value. This, in fact, is one way relationships
between Kripke-style and algebraic-style semantics for modal logics
are established. In our case, however, since we have independent
relations F and F, things must be a little more complicated. The
following is based on [8] and [9].

By a truth value relative to the generalized Kripke model
M = {9, R, F, ¥) we mean a pair, (F, A), where both F and A4 are
subsets of 4. Informally, we can think of F as the set of worlds in
which some sentence holds (), and A as the set of worlds in which
the sentence fails (F). More loosely yet, we can think of F as evidence
Jor, and A as evidence against. We use Kr(#) for the space of all
these truth values.

Just as in Section 2, there are two natural partial orderings that can
be put on the space Kr(.#) of truth values. Let (F}, 4,> <, (F,, 4,)
if F; € F, but A, € A,. Intuitively, (F,, 4,) is ‘more true’ than
(F,, A, if the evidence for has gone up but the evidence against has
gone down. Similarly, let {F,, 4,> <, (F, 4,) if F, € F, and
A, © A,. Intuitively, {F,, A,) represents ‘more knowledge’ than
{F,, A, if all the evidence, for and against, has gone up. It is not
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hard to show that under both of these partial orderings the space of
truth values is a complete lattice, and so again all meets and joins
exist. We continue to use the notation of Section 2: A, etc. for <,
and ®, etc for <,.

Since we have complete lattices under both orderings, top and
bottom elements exist in Kr(.#) for each. We use false and frue for
bottom and top under <,, and L and T for bottom and top under
<;. Notice that false = {(J, %), that is, no evidence for but total
evidence against. Likewise 1 = (&, &), or a complete lack of
evidence either way. Similarly for the tops.

We can define a straightforward negation operation: —1<{F, 4> =
{4, F). And also, appropriate definitions of O and < operations are
not difficult to come by. O((F, 4)) = (F’, A’) where F’ = {"|VA
IF'ZA = A€ F} and A" = {I'|3A T#A and A € A4}. Likewise,

OKF, A)) = (F’, A”) where F’ = {T'|3JAT'#®A and A € F} and
A = {T|VATRA = A € 4}.

Suppose we define a mapping v from sentences of L to truth values
of Kr(.#) by making use of the underlying generalized Kripke model,
as follows:

v(X) = (TFe9|TEX}L{Ted TFXD
It is not hard to show that » has the foll.owing properties.
v(MX) = TX)
v X A Y) = v(X) A (YY)
(X v Y) = vX)v o(Y)
v(V)e(x) = A v(e(d))

deD

(@) =V v(e@d))

»(0X) = O@X))
2(OX) = O(W(X))

Suppose, for the rest of this section, we call-a mapping v a valuation
if it has the properties listed above. Again, as in Section 2, we can _
partially order valuations: v <, w if v(X) <, w(X) for every atomic X.
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This gives us a complete lattice again. Finally, it is not difficult to
show that v <, w implies v(X) <, w(X) for every sentence X, not
just for atomic ones. (A similar partial ordering based on <, is also
possible, though again the presence of negation destroys monotonicity
with respect to arbitrary sentences).

Suppose we have a mapping .# assigning truth values to atomic
sentences about the real world. That is, #: R — Kr(.#). .# can
be thought of as arising from the opinions of experts, much as in
Section 2, though now if we think in terms of the underlying Kripke
model, we will have to associate experts with each possible world.

Again, as in Section 2, we call a valuation v realistic if, for each X
in R, v(X) = #(X), and for each atomic sentence X of arithmetic, if
X is true in the standard model, v(X) = true, and if X is false in the
standard model, v(X') = false. The ordering <, makes the set of
realistic valuations into a complete lattice.

Finally, we can define a mapping @ from valuations to valuations
word for word as we did in Section 2. And similar results obtain: ®
has a smallest fixed point (under <,) v, which serves as an ‘intended’
model for the modal language L. Suppose we call a truth value
(F, 4 in Kr(A) consistent if F " A = . If .# only assigns con-
sistent truth values to members of R, the same will be true of v,.
Then, if we translate information about v, back into information
directly involving the possible world model we began with, we have
essentially the generalization of Kripke’s construction that was
mentioned in [13]. But of course the present setting is more general,
because it makes allowance for inconsistent truth values as well. And
if we begin with a one-world Kripke model (with O and < trivialized)
then the Kr(.#) structure of this section is isomorphic to #OUR
from Section 2.

4. INTERLACED BILATTICES

The truth value spaces above, and others as well, can be grouped
together and treated uniformly using the notion of bilattice, [8], [9].
This section presents such a development, and contains sketches of
proofs for many of the results cited earlier. In the next section we
apply a Kripke-style development in the general bilattice setting.
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A mild warning first, however. The notion of bilattice as currently
defined in the literature does not meet our needs; we must require
stronger conditions. (In fact, at an earlier stage of development, these
conditions were part of the general definition of bilattice). In order to
remain compatible with current terminology, we use the technical
term interlaced bilattice for a structure meeting the conditions we
require, so that the term bilattice will not wind up with competing
definitions.

DEFINITION 4.1. By an interlaced bilattice we mean a set B together
with two partial orderings, <, and <,, meeting the conditions:

1. each of the two partial orderings gives B the structure
of a complete lattice (hence arbitrary meets and joins
exist with respect to each ordering);

2. the meet and join operation for each partial ordering is
monotone with respect to the other ordering.

We call condition (2) above the interlacing condition. We will con-
tinue using the notation introduced in earlier sections. Arbitrary
meets and joins under the <, ordering are denoted with /\ and \/
respectively; finite meets and joins under this ordering are denoted
with A and v respectively. Arbitrary meets and joins under the <,
ordering are denoted with IT and X respectively; finite meets and joins
under this ordering are denoted with ® and @ respectively. Also the
bottom and top under the <, ordering will be denoted L and T
respectively, and under the <, ordering by false and true respectively.
We assume all interlaced bilattices are non-trivial, 1L # T and
false # true.

Since an interlaced bilattice is a lattice under <, it follows that
a, <, a,and b, <, b, together imply a, A b, <, a, A b,. But by con-
dition (2) of the interlaced bilattice definition, we also have that
a; < a; and b, <, b, together imply a;, ® b; <, a, ® b,. That is, the
meet operation of the <, ordering is monotone with respect to the
<, ordering. Similarly for the other combinations of operation and
order. More generally, suppose 4 and B are two subsets of B. We
write 4 <, B if: for every a € A there is some b € B with a <, b, and
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for every b € B there is some a € A with a <, . Then condition (2)
above requires that if 4 <, B, then I14 <, I1B. And, of course, there
are similar implications for the various combinations of orderings and
operations. It is this tight interconnection between the partial order-
ings that makes an interlaced bilattice a coherent mathematical struc-
ture and not just a set with two independent lattice orderings on it.

We have required that an interlaced bilattice be a complete lattice
under both of its partial orderings. In a broader context there may be
some value to considering the weaker notion that requires just a lattice
structure without insisting on completeness. We have not found any
interesting applications however, but if there turn out to be some, the
notion above should be rechristened a complete interlaced bilattice,
reserving the term interlaced bilattice for the version that does not
insist on completeness. In the interests of simple terminology, we do
not do this in the present paper.

The truth value spaces considered in earlier sections, # O%# and
Kr(#), are all interlaced bilattices. This is not difficult to check, and
we do not go through the details. [6] presents a family of examples
arising from topological spaces, and indirectly from Kripke intuition-
istic logic models. Also any complete lattice trivially yields an inter-
laced bilattice if we take both the partial orderings to be the same,
namely the given lattice ordering. Moreover, there is a general and
intuitively appealing method for constructing interlaced bilattices, due
to Ginsberg. We describe it briefly.

Suppose C = {C, <> and D = (D, <) are complete lattices. (We
use the same notation, <, for both orderings, since context can deter-
mine which is meant.) Form the cartesian product C x D, and give it
two orderings, <, and <,, as follows.

{ep, diy <6y dyyife < and d) < 4
(e, dy) <,€edy)if ¢y < qand d, < 4,

We denote the resulting structure, ¢C x D, <,, <,) by #(C, D). It
is easy to check that for complete lattices C and D, 4(C, D) is an
interlaced bilattice.

The intuition here is rather nice. Suppose we think of a pair {c, d)
in #(C, D) as codifying two independent judgements concerning the
‘truth’ of some sentence: ¢ represents our degree of belief in it, while d
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represents our degree of belief against it. Since C and D can be dif-
ferent lattices, expressions of belief for and against need not be
measured in the same way. If {¢|, d,)> <, {¢;, d,) then {c,, d,)
embodies more ‘knowledge’ than {c¢,, d, ), which is reflected by an
increased degree of belief both for and against. On the other hand, if
{c1, d\) <, {cy, dy) then {¢,, d,) embodies more ‘truth’ than

{¢,, d;), which is reflected by an increased degree of belief for, and a
decreased degree of belief against.

Suppose we begin with the simplest non-trivial lattice 7 #: { false,
true} with false < true. Then (I R, I R) is simply an isomorphic
copy of FOUAR (Figure 1). In this representation, L is < false, false),
no belief for and no belief against; similarly T is {true, true). Like-
wise false is { false, true), no belief for, total belief against; and true
is {true, false.

Another example of importance is a probabilistic one, £([0, 1], [0, 1]),
based on the complete lattice [0, 1] with the usual ordering < of reals.
The earlier discussion of Kripke models for modal logics fits into

this paradigm rather nicely. As Ginsberg suggests, we can think of
the set of possible worlds in which a formula is true as the evidence
Sfor a formula; similarly for false and evidence against. Then, given a
particular Kripke model with #~ as the set of possible worlds, use the
power set lattice P = (P(#"), <) to create the interlaced bilattice
(P, P). This yields the structure considered in Section 3.

Likewise the family of interlaced bilattices that was considered in
[6], based on topological spaces arising out of Kripke Intuitionistic
Logic models, is also yielded by this construction technique. Let 7 be
a topological space. The family @ of open sets is a complete lattice
under <. Join is union, while meet is interior of intersection. Like-
wise the family € of closed sets is a complete lattice under =. Now
consider the interlaced bilattice Z(0, ¥).

Thus there are many potential applications for general results on
interlaced bilattices. It is to such general results that we devote the
rest of this section.

PROPOSITION 4.1. In an interlaced bilattice B:
1. true @ false = T;true ® false = 1;
2. Tv 1l = true; T A L = false.
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Proof. Since T is the largest member of B under the <, ordering,
thena @ T = T for every a. Also, since false is the smallest member
under the <, ordering, false <, T and hence, since we have an interlaced
bilattice, a @ false <,a @ T. Now, true @ false <, true ® T = T.
In the other direction, since true is the largest member under the <,
ordering, T <, true and hence a @ T <, a @ true for any a. Now,
T = false ® T <, false @ true. The other items are also proved by
similar methods.

In addition to the lattice operations, interlaced bilattices often have
some natural notion of negation. This is the case with the examples of
earlier sections.

DEFINITION 4.2. An interlaced bilattice B has a weak negation
operation if there is a mapping — :B — B such that:

1. a <;b=a <, b;
2. a <,b="b <,a.

Note We have used the term weak negation. Generally a bilattice is
said to have a negation operation if, in addition to the conditions
above, we have a = —1a. In this paper we will not need this extra
condition, though it holds in many examples of interest. In the family
of interlaced bilattices considered in [6] the negation operation gener-
ally did not satisfy this condition, but did satisfy the weaker one:
a <,71a, a kind of intuitionistic condition. There are examples of
interlaced bilattices with weak negations that do not even satisfy this.
Besides negation, other operators may be of interest, such as O and
<& from Section 3.

DEFINITION 4.3. A mapping f: B — B is kK monotone ifa <, b=
f(a) <, f(b). Similarly for ¢t monotone.

In fact, the operations O and < from Section 3 are both k and ¢
monotone. This is easy to verify.

Finally, there is one more operation that many interlaced bilattices
admit, though it is less commonly considered than those mentioned
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above. We call it conflation. In an interlaced bilattice Kr(.#), from
Section 3, the intended conflation of a truth value {F, 4) is the truth
value {4, F), where the overbar means complement with respect to
the set of all possible worlds. The idea here is: the conflation of a
truth value is a new truth value which counts as evidence for anything
that wasn’t counted against originally, and counts as evidence against
anything that wasn’t counted for originally. In # O% % we take
the conflation of T to be 1 and conversely, and the conflation of
true and false to be themselves again. And in £([0, 1], [0, 1]) we
take the conflation of {a, > to be {1 — b, 1 — a). For the rest of
this paper, when we refer to these interlaced bilattices we mean these
spaces together with the conflation operations just associated with
them.

Not all interlaced bilattices have a conflation operation, though all
the ones considered here do. Formally, we require the following
(which is related to the notion of complete selfdual lattice from

[17)).

DEFINITION 4.4. An interlaced bilattice B has a conflation opera-
tion if there is a mapping: B — B such that:

1. a<,b=> —a<,—b;
2. as;b=>—-b<, —a
3. ——a = a.

Not every interlaced bilattice has a conflation operation. For instance
S FX in Figure 2 is an interlaced bilattice without a conflation opera-
tion. This interlaced bilattice is, in fact, 2(4, B) where A is the lattice
{0, 1} and B is the lattice {0, 1, 2}, where each has the natural order-
ing. Here ais <0, 1), and b is {1, 1). #S % also has a weak negation,
but not a negation operation.

Conflation is like a dualized version of negation, with the roles of k
and ¢ interchanged. It is easily checked that.the examples of con-
flation operations mentioned above do satisfy this definition. We use
the obvious extension of notation from elements of an interlaced
bilattice to subsets: — A4 = {—a|a € 4}. (The following has relation-
ships with the notion of self-duality from [17].)
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Fig. 2. The interlaced bilattice ¥ £ %

PROPOSITION 4.2. In an interlaced bilattice with a conflation
operation:

1. N4 = AN—4;,—(@anb) = (—anr —b)
2. -4 = \/ -4, —-@vb) = (—av —b)
3. —MMA = - A4;,—-(@®b) = (—ad® —-b);
4. A =T~ A, -@®b) = (—a® —b).

Proof. Suppose a € A. Then \A4 <, a, and so — A4 <, —a. Since
a is an arbitrary member of 4, and hence — a is an arbitrary member
of — A, this establishes that — A4 <, A\ — 4.

Conversely, again letae 4,50 —ae —A. Then \ — 4 <, — a,
so by parts (1) and (3) of the definition, — /\ — 4 <, a. Since a is an
arbitrary member of 4, we have — /\ — 4 <, /\ 4, and hence
N —4<, -N\A4

Part (1) follows immediately from these two results. The other
items are similar.

PROPOSITION 4.3. In any interlaced bilattice B with conflation:
L. L= T;-T = 1

2. —false = false, —true = true.

Proof. Since L is the smallest elehent in the <, ordering, then
1l <, — T,and hence T <, — L. It follows that T = — L. This is
half of part (1), and the other half follows easily.
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For part (2), we first note that, since false is the smallest member of
B under the <, ordering, then (x) false v a = a for every a. Now
—false = —false v false [by (¥)] = —false v — —false [by definition
of conflation] = — (false v — faise) [by Proposition 4.2 part
Q)] = —(—false) [by (») again] = false [by definition of conflation].
The second half of part (2) is similar.

In general, we are interested in interlaced bilattices with other operations
besides the lattice ones, typically —, and maybe O and <, as in the
examples of Section 3.

DEFINITION 4.5. If B is an interlaced bilattice with a conflation
operation, and f/: B — B, we say the conflation operation commutes
with f provided —f(a) = f(—a).

We leave the reader to check that the conflation operation for the
interlaced bilattice # O%# commutes with —1. Also the conflation
operation for the interlaced bilattice Kr(.#) commutes with —1, 0O,
and ¢. The definition of commutes with extends in an obvious way to
binary operations, and beyond. Then Proposition 4.2 says conflation
always commutes with A, /\, v and \/.

Next, certain substructures of an interlaced bilattice are often of
interest to us. The conflation operation provides a useful mechanism
for identifying them. (The notion we call consistent below is analogous
to that of E-under in [17], while that of exact is analogous to E-U.)

DEFINITION 4.6. In an interlaced bilattice B with conflation, for
aeB,

1. aisexactifa = —a,
2. a is consistent if a <, —a.

In the interlaced bilattice & O% &, the exact truth values are the classi-
cal ones, false and true, and the consistent ones are these together with
1, that is, the values used in Kleene’s three valued logic. In Kr(.#),
the exact truth values are {F, A) where F and A4 are complementary.
The consistent ones are those for which Fn 4 = . In £([0, 1],
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[0, 1]) the exact values are pairs {a, b> for which a + b = 1, while
the consistent ones are those for whicha + & < 1.

In FO%A, the exact truth values are closed under the operations
of classical logic. This is not surprising, since the exact truth values
here are just the two values of classical logic. But the observation
generalizes, to the following.

PROPOSITION 4.4. In an interlaced bilattice with conflation, the
exact truth values include false and true and are closed under A, v,
/\ and \/. Further, if f is an operation that the conflation operation
commutes with, then the exact truth values are closed under f as well.
The exact truth values do not include 1 or T and are not closed
under @ or ®.

Proof. false and true are exact by Proposition 4.3, If g and b are
exact, by Proposition 4.2, —(a@a A b)) = —a A —b = a A b, hence
the exact truth values are closed under A . The other closure cases are
similar. Neither L nor T are exact by Proposition 4.3 (and the fact
that L # T). The exact truth values are not closed under @ because
otherwise true @ false = T would be exact, and it is not. Similarly
for ®.

Again in FO%A, the consistent truth values are also closed under the
operations v, \/, A, /\ and — because, after all, the consistent truth
values of FOUXR are just the values of Kleene’s system, and the
operations listed are Kleene’s. Moreover, under the operations arising
from the <, ordering, there is closure generally under the meet
operation II, and closure under the join operation ¥ whenever it is
applied to a directed set (a set is directed if any two members have a
common upper bound in the set). In other words, under the <,
ordering we have a complete semi-lattice. This plays a key role in
Kripke’s approach, though the terminology itself was not used (see
{SD). And once again, we are dealing with general facts.
PROPOSITION 4.5. In an interlaced bilattice with conflation, the
consistent truth values include the exact truth values, and are closed
under A, v, /\ and \/ Further, if fis a k-monotone operation that
the conflation operation commutes with, then the consistent truth
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values are closed under f as well. The consistent truth values are
closed under II, and under X when applied to a directed set.
Proof. Every exact truth value is trivially consistent. Suppose S is a
set of consistent truth values. Then it follows that S <, — S so,
AS <. A\ — S = — /A\S by Proposition 4.2. Hence the consistent
truth values are closed under /\. The other closure cases are similar.
Again, let S be a set of consistent truth values, so that § <, — S.
Then using Proposition 4.2, IIS <, [I—-S = —ZS. But also,
IIS <, =8, so —XS <, — IIS. It follows that I1S <, — IIS,
so IS is consistent. Thus the consistent truth values are closed
under I1.
Finally suppose S is a set of consistent truth values that is also
directed by <,. To show XS is consistent we must show LS <,
— 38 = IT1—S. To show this, it is enough to show that, for any a,
be S, a <, — b. But, since S is directed, and a, b € S, there must be
some ¢ € S with a <, ¢ and b <, c¢. From the second of these
inequalities, —c¢ <, — b. Also since the members of S are consistent,
¢ <, — c. Combining these inequalities, we have a <, — b. (This
neat argument is from [17].)

5. BILATTICES APPLIED

In Section 4 we established some general properties of interlaced
bilattices, and observed that the truth value structures of Sections 2
and 3 met the conditions necessary for them to have these properties.
Now we show how a Kripke-like development can be applied using
interlaced bilattices, hence to the structures already discussed.

As in previous sections, let L be a first-order language that includes
notation for arithmetic. L may or may not also have modal operators.
Let R be the class of atomic sentences of L that are ‘about’ the real
world, that is, are neither arithmetic sentences nor of the form Tr(n).
And let B be an interlaced bilattice with weak negation, fixed for the
rest of this section. If L has modal operatdrs, then we assume there
are corresponding operators defined on B, denoted O and <, which
are monotone with respect to the two partidl orderings of B. Finally,
let .# be a mapping from the sentences of R to B. We think of .# as
supplying information about the ‘real world’, and this information
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may be incomplete or contradictory. That is, .# may map some
sentences of R to consistent though not exact truth values, and some
to members of B that are not even consistent truth values (assuming
that B has a conflation operation, so that notions of consistent and
exact are meaningful).

A valuation is a mapping v from sentences of L to B meeting the
usual conditions:

(X)) = vX)

X A Y) = v(X) A v(Y)

vX v Y) = v(X) v v(Y)

v(Vx)o(x)) = d/e}) v(9(d))

v((@)e(x)) = d\e{)v(q)(d))-
and if L has modal operators, then also:

v(0X) = O(@(X))

?(0X) = O@l)).

We continue to write v <, w, for valuations v and w, provided
v(A4) <, w(A) for atomic A. Similarly for <,. We have assumed the
modal operation symbols, if present, are interpreted by monotone
operators. The lattice operators are monotone in both orderings. And
the negation operation is monotone in <,, though not in <,. Then
we immediately have the following. ‘

PROPOSITION 5.1. Let v and w be valuations.

1. v <, w = v(X) <, w(X) for every sentence X

2. v <, w=v(X) <, w(X) for every sentence X that does
not contain negations.

We continue to call a valuation realistic if, for each X in R, v(X) =
F£(X), and for each atomic sentence X of arithmetic, if X is true in
the standard model, v(X') = true, and if X is false in the standard
model, v(X) = false. The collection of all realistic valuations is a
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complete lattice under both the <, ordering and the <, ordering.
Under the <, ordering, the smallest realistic valuation maps all
sentences of the form Tr(n) to L, while the smallest realistic valuation
under the <, ordering maps such sentences to false. We will dis-
continue discussion of the <, order until Section 6 because of the
limitation on negation in Proposition 5.1. The only role of this order-
ing, for now, is to supply a natural lattice-theoretic interpretation for
the logical connectives A, v, and the quantifiers.

Next, we define a mapping ® on valuations just as we did in earlier
sections. We repeat the definition for convenience. For a valuation v,
®(v) = w where w is the valuation whose atomic behavior is:

1. if X is an arithmetic sentence, w(X) is the truth value of
X in the standard model;

2. if Xe R, w(X) = S(X),
3. wTrCXY) = o(X).

We have directly from Proposition 5.1, and a small amount of work:

PROPOSITION 5.2. ® maps realistic valuations to realistic valuations,
and v <, w = O(v) <, D(w).

The Knaster-Tarski Theorem applies, and says that @ has a smallest
fixed point (under the <, ordering). Indeed, it says ® has a largest
fixed point, and the collection of all fixed points is a complete’ lattice.
At any rate, the smallest fixed point is the one of most interest:
it provides a ‘meaning’ for L, including the problematic predicate
Tr, that is coherent, though partial, and involves no ‘unnecessary
knowledge’.

The usual proof of the Knaster-Tarski Theorem actually establishes
a stronger result that is often considered to be a kind of generalized
induction. Suppose T is a monotone map from a complete lattice to
itself. Then not only will T have a smallest fixed point vy, but if w is
any member of the lattice such that T(w) < w, then v; < w. This has
an important application here. Recall, ® depends on .#, and so we
write ®, to emphasize this.
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PROPOSITION 5.3. Suppose .# and ¢ are both mappings from
R to B and # <, #. Let v, be the least fixed point of @, (in
the <, ordering), and v, be the least fixed point of ®,. Then
Vs Si Uy

Proof. It is quite easy to see that, since £ <, # then for every
valuation v, ®,(v) <, @,(v). Then ¥, (v,) <, Vy(v,) = v, since v,
is a fixed point of ®@,. It follows that the least fixed point of ®, must
be below v, that is, v, <, v,.

It is this proposition that substantiates earlier claims that, as time
goes on, and more information is gained about the ‘real world’, no
knowledge is lost, where by knowledge we mean that supplied by the
least fixed point model.

Now suppose that B is also an interlaced bilattice with conflation.
Then notions of exact and consistent truth values are applicable. We
also assume that negation and the modal operators (if present) com-
mute with conflation. It is now an easy consequence of Proposition
4.5 that, if .# maps all members of R to consistent members of B,
then the least fixed point of ®, will also take on only consistent truth
values. We omit the proof of this, but it accounts for why, in most
earlier treatments, truth value ‘gluts’ could be safely ignored. They do
not come up unless they are forced to. On the other hand, one
can easily create a language more general than L, which contains
propositional connectives corresponding to the bilattice operations @
and ®. If we were working with such a language, dealing with
inconsistent truth values would be common, because of results like
Proposition 4.1.

6. EXTREMAL FIXED POINTS

We have been considering fixed points of operators assigning truth
values; fixed points that are smallest in the <, ordering. According to
the Knaster-Tarski Theorem, monotone operators on a complete
lattice have biggest as well as smallest fixed points. Moreover, there is
another lattice ordering, <, present.’ It has supplied us with meanings
for logical connectives and quantifiers, but it could not play a role
like that of <, because the presence of negations destroys monotonicity
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with respect to this ordering. However, Proposition 5.1 implies that °
monotonicity still obtains under <, provided no negations are
present. With no negations allowed, liar sentences are no longer
possible, though sentences asserting their own truth are.

For the rest of this section we assume L is a first order
language without negation.

Under this assumption the mapping @ defined in the previous section
is monotone under both the <, and the <, orderings, and hence four
extremal fixed points exist. It turns out that, under certain restrictions
on the underlying interlaced bilattice of truth values, there are rather
elegant relationships between them. We devote the rest of this section
to stating and proving them. We begin by introducing the appropriate
interlaced bilattice restrictions.

A bilattice has four basic binary operations, ®, @, A and v, and
so there are twelve possible distributive laws:

anbve=(@nAnb)vi(anco
anb®do @anb)@(@nco

etc.

DEFINITION 6.1. We call an interlaced bilattice distributive if all
twelve distributive laws hold.

Distributive interlaced bilattices are fairly common; #0%Z for
instance is distributive. We have the following simple general result
whose proof we omit.

PROPOSITION 6.1. If C and D are distributive lattices then
#(C, D) is a distributive interlaced bilattice.

In fact, distributivity implies the interlacing condition. Suppose B has
two partial orderings, <, and <,, each of which makes B into a
complete lattice. And suppose all twelve distributive laws hold. Then
we can argue that @ <, b implies a A ¢ <, b A c as follows.

a <, b (assumption)

a®b = b
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@®b)aAnc =b>bnac
@nc)® @B Ac) = b A c(distributivity)
anc<gbnec
Similarly for other order/operation combinations.
DEFINITION 6.2. For the mapping ®, the least and greatest fixed
points under the <, ordering are denoted v, and V;; the least and

greatest fixed points under the <, ordering are v, and V,.
Now the main result of this section is easily stated.

THEOREM 6.2. If the interlaced bilattice B of truth values is distri-
butive and finite. Then:

1. v, = 9, @V
2 Vo = v, @V,
3. v, = v AV
4 V, = v v I

These interconnections between the extremal fixed points place severe
restrictions on what is possible, but also provide interesting side
information. We discuss this briefly with respect to item (1); the other
three items have similar consequences. )

Item (1) can be read as saying that v, is a consensus model between
those that are least and greatest in the <, ordering. Suppose X is a
sentence asserting its own truth. In Kripke’s least fixed point model,
whose construction we can carry our in 0% %, X is underdeter-
mined, 1, although there are models in which X is true and others in
which X is faise. In fact, it is easy to see that v,(X) = false and
Vi(X) = true, and Theorem 6.2, part (1), says v,(X) = false ®
true = 1.

Finally, suppose we continue using & O#%%, and in addition that
maps all members of R to consistent truth values. As we observed at
the end of Section 5, then v, can only take on consistent truth values,
and we are essentially in the setting Kripke used, except for the
absence of negations. Under these circumstances, item (1) above

[7)
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implies the following for atomic X:
v.(X) = trueif and only if v,(X) = true
v.(X) = falseif and only if V,(X) = false.

For instance, suppose v,(X) = true. Since v, <, V,, then V(X)) =
true and so v, (X') = true ® true = true. Conversely, suppose
2,(X) # true. Then v,(X) must be L or false, and either way,
2,(X) ® V,(X) cannot be rtrue.

The rest of this section is devoted to a proof of the result above.

LEMMA 6.3. Suppose that in a distributive interlaced bilattice,
a, <,4,and a, <, 4, (or q, <, A, and a, <, A,). Then:

@®A4) A @R A) = (a A ay) (A A 4,),
(@ & 4) A (a, @ 4,) (@ A a) @ (4, A Ay),
(@ A 4) ® (a; A 4y) (@ ®@ a)) A (4, ® 4,),

etc.
Proof. Using a distributive law:
@ @A) A (@G®A4) = (g A a) ® (@ A 4y)
R Aa)® (A A dy) = *

If a, <, 4, and a, <, 4, then using the basic bilattice monotonicity
conditions:

x <, (@A @)U AA)® U AA)® (M A A4)
= (@ A @) @ (4, A 4y)
Similarly
£ A ® (@ Aa)® (@ A a)® U A 4)
= (@ A @) ® (4, A 4).

The other parts of the Lemma are proved in a similar way.
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LEMMA 6.4. Suppose that in a finite, distributive interlaced bilattice,
a; <, A, for each i € I (or g, <, A, for each i € I'). Then

/\(ai®Ai) = /\ai®/\Ai

iel iel iel
/\(ai@Ai) = /\ai®/\Ai
iel iel iel
[T@na 4) = Jla ~[]4

iel iel iel
etc.
Proof. Since the interlaced bilattice is assumed to be finite, ‘infinitary’

operations are really ‘finitary’ ones, so the proof is like that of the
previous lemma.

Next, we can define operations @, etc. on the space of valuations, in
a pointwise way.

DEFINITION 6.3. For valuations v and w, v @ w is the valuation
given by: (v @ w)(4) = v(4) @ w(A) for atomic 4. Similarly for ®,
v and A.

The definition above contains a restriction to the atomic level. The
extension to arbitrary formulas does not always follow, but the
following result gives circumstances under which it does.

PROPOSITION 6.5. Suppose B is a finite, distributive interlaced
bilattice, v and V are valuations of the language L in'B, and ¢ is a
sentence of L (hence without negations). If v <, Vorv <, V then:

1. @@ V) = vo) @ Vip),
2. @®V)(e) = vio) ® Vi),
3. @ A V)(@) = v(o) A Vip),
4. (@ v V(@) = v)v Vip),

Proof. By induction on the complexity of ¢. If ¢ is an atomic sen-
tence, the result is immediate from the definition, and does not use
the inequalities between v and V. We consider one of the induction
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cases, as a representative example. Suppose ¢ is (Ix)y¥(x), and 1) is
known for formulas simpler than ¢, in particular for y(d) for each
d e D. Then

@@ V) = (@& V)Ex)YX)

= V (@ @ V)(e@))

deD

= d\{) [ (@) @ V()]
(by induction hypothesis)

= Vo @) ® d\{) V(y(d))

deD

(by Lemma 6.4)
= (@)Y () & V(Ex)Y(x))
= v(¢) ® V(o).

Finally we come to the proof of Theorem 6.2 itself.

Proof. Smallest and biggest fixed points are approached via a
transfinite sequence of approximations. We use the following notation
to represent this. (v,), is the smallest realistic valuation in the <,
direction. For an arbitrary ordinal «, (2,),,, = ®((7,),)- For a limit
ordinal 4, (9,); = \/.<i (¥,),. As usual, the sequence (v,), is mono-
tone increasing in « (x < f implies (v,), <, (¢,)5). And for some ordi-
nal o, (v,), = v,, the least fixed point of ®@ in the <, ordering. In
fact, from that stage on, things remain fixed; that is, if « > oo then
@), = v, :

More notation. (¥)), is the largest realistic valuation in the <,
ordering. (V). = ®((¥;).). And for limit 4, (V)); = Necz (M-
Then (V;), decreases in the <, ordering, and for some ordinal o,
(V). = V,. Finally we use (v;), and (¥;), analogously, but with <,
¥ and IT playing the rules that <,, \/ and /\ played above.

Now to show item (1) of Theorem 6.2, v, = v, ® V,, it is enough
to show by transfinite induction that, for each ordinal «, (v,), =
). ® (V),. Items (2), (3) and (4) are proved in exactly the same way.

Initial Case. Let A be an atomic sentence. The initial valuations are
smallest and greatest in their respective orderings. If 4 is arithmetic,
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or in R, all realistic valuations will agree on 4 and so, trivially, (v,), =
(@) ® (V,)o. If A is neither arithmetic nor in R, then (v,),(4) = L,

(@)o(4) = false and (V)o(4) = true, so (v)o(4) = (¥,)o(4) @ (V)o(A)
by Proposition 4.1. Thus (z,)y = () ® (V.)o-

Induction Case. Suppose (v¢), = (v,), ® (V}),. Let A be an atomic
sentence; we show (2,),,1(4) = (¥),11(4) ® (V)),4:1(A). The subcases
where A is arithmetic or in R are trivial, and are treated as in the
previous case. Now suppose 4 is Tr("X ) for some sentence X.

@er1(4) = (O)era(Tr("X )
= @((2),) (Tr("X™)
= (@)(X)

= [(@). ® (N)](X)
(by induction hypothesis)

= (9),(X) ® (V),(X) (by Proposition 6.5)
= O((@)(Tr(" X)) @ O((V)u(Tr("XT)

= @)er 1 (Tr(CX M) & (V)ot (Tr("X )

= (©)1(4) @ (V)11 (A).

Limit Case. Suppose (v;), = (v,), ® (V}), for every & < A, where

A is a limit ordinal. Let 4 be an atomic sentehce. Then (v,);(4) =
Coc; @)D A) = Z,; (v,),(A4). Since the interlaced bilattice B is finite,
and (v,), is increasing with « in the <, ordering, there must be an

ap < 4so that T, ;(v;),(4) = (v;),(4). Further, for any ordinal 8
with oy < B < 4 we must have (v,),,(4) = (¥,)5(4) = (¥,):(4).
Similarly, using the facts that (v,), is increasing and (V}), is decreasing
in the <, ordering, there must be ordinals «,, &, < 4 such that a; <
B<i= @) = @A) = @) = Vaus@)(4) and o, <
B < A= (H)y(A) = (M)(A) = (F)i(d) = s (1)u(A). Now, let
y = max{oy, &, a,}. Then, since y < 1 we can use the induction
hypothesis, and so:

()i (4) = (’Uk)y(A)
(@), ® (V),1(4)
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= (2),(4) ® (V),(4)
= (©)(4) ® (V):(4).

Hence (v,);, = (v,), ® (V).
This concludes the proof.

7. CONCLUSION

While Kripke’s original paper on the theory of truth used a three-
valued logic, we believe a four-valued version is more natural. Its use
allows for possible inconsistencies in information about the world, yet
contains Kripke’s development within it. Moreover, using a four-
valued logic makes it possible to work with complete lattices rather
than complete semi-lattices, and thus the mathematics is somewhat
simplified. But more strikingly, the four-valued version has a wide,
natural generalization to the family of interlaced bilattices. Thus, with
little more work, the theory is extended to a broad class of settings.
Indeed, a result like Theorem 6.2 would not even be possible to state
without the interlaced bilattice machinery. We hope the notion of
interlaced bilattice will make apparent further such connections.
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