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Abstract. We describe simple semantic tableau based theorem provers for four standard modal logics, in
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1. Introduction

Resolution is almost an industry standard for automated theorem proving in logic. But,
it is primarily a mechanism of classical logic. When it has been applied outside that
setting as in, say, [1] or [7], it has required considerable coercion, partly because normal
form theorems are not generally available. As a lesser known alternative to resolution,
Smullyan’s formulation of semantic tableaux dates from about the same time period
[15, 16] and also lends itself well to automation. It is a direct descendant of Beth’s
tableau system [3] which, in turn, is a descendant of the Gentzen sequent calculus [8].
Resolution methods are often thought of as being based on Herbrand’s Theorem [9].
It is well-known that Gentzen’s and Herbrand’s ideas were closely related. But, even
with this more-or-less common ancestry, tableau and resolution systems have dis-
tinctly different flavors to them. And unlike with resolution, over the years the basic
first-order tableau system has developed natural extensions covering many non-classical
logics [5]. Interest in non-classical theorem proving is growing and for this reason, as
well as for its intrinsic interest, tableau methods deserve to be more widely known.
In this paper we describe tableau based theorent provers for four modal logics, in both
propositional and first order versions. The underlying theory may be found in [5],
where the tableau systems considered here are discussed in more detail. It turns out that
only mild modifications to the abstractly presented systems suffice to make them easily
programmable. Prolog implementations are especially perspicuous, because the back-
tracking mechanism of Prolog is exactly what is needed, and so the Prolog programs
amount to little more than definitions of tableau proof. We begin with classical logic,
for the sake of background and to make the paper more self-contained. We do assume
readers are familiar with the general ideas of Kripke models {11, 12] and the basic
notions of modal logic. Nothing beyong the elementary will be needed however.



192 MELVIN FITTING
2. Classical Propositional Tableaux

For those who are not familiar with it, we briefly sketch the semantic tableau system
for classical propositional logic. The primary reference for this is [16]. We differ from
that only by putting negations into a separate category, to avoid redundancy.

We assume propositional formulas are defined as usual, allowing as connectives
—1 (not), A (and), v (or) and o (implies). Although various subsets of these
constitute complete sets of connectives, there is no particular reason to restrict
formulas, since Smullyan’s system of ‘uniform notation’, presented below, allows a
general treatment. The biconditional, however, does not fit well into the schema used,
and is best treated as an abbreviation. Smullyan incorporates truth values directly into
the syntax of tableaux. This is not necessary, and [16] also presents an alternate
tableau system without this feature, but it is a device which has pedagogical advan-
tages, and which makes parsing somewhat easier. Thus signed formulas are formulas
prefixed with either ‘7 or ‘F’, intuitively indicating that the following formula is true
or false; for example, F(X > Y) or T(4X o (X A Y)). We will refer to a signed
formula as true when we mean the unsigned part has the sign as its truth value. Signed
non-atomic formulas are grouped into three categories: those acting conjunctively
(called o formulas), those acting disjunctively (called B formulas), and those whose
principal connective is negation (called negative formulas). Each negative has one
component, each o has two components, denoted o, and a, respectively. Similarly for
the f case. The categories and components are defined in the following tables.

negative | positive
TX FX
FX TX
o o, o,
TX A Y X TY
FX vY FX FY
FX>Y TX FY
B B B,
TX v Y TX TY
FX ANY FX Fy - g
TX o Y FX 7Y
Fig. 1.

The intuition is, under any truth-functional valuation, a negative is true iff the
corresponding positive is true; an a is true iff both «, and «, are true; a f is true iff at
least one of f, or 8, is true.
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We have followed Smullyan in making A, v and > strictly binary. However this
can be generalized in obvious ways. For example, here is a generalized a table.
The tableau rules given below also have straightforward extensions, which we do not
discuss here.

o o o ... 0,
TX, A Xm A ..o A X, TX, TX, ... TX,
FX, v X, v...v X, FX, FX, ... FX,
FXioX,o...>2X, TX, TX, ... FX,

Fig. 2.

Just as in resolution theorem proving, tableau proofs are refutation arguments.
Tableau proofs are labeled trees, with signed formulas used as labels, and which
meet certain closure conditions. More specifically, a proof of a formula X begins
with the one-branch, one-node tree labeled FX (essentially postulating that X
could be false under some truth-functional assignment). Then the tree grows using
the following branch extension rules, corresponding to the intuitions mentioned
earlier.

negative o B
positive o B | B>
o,
Fig. 3.

Thus, if a signed formula of type a occurs on a branch, the branch may be
lengthened by adding o, and «, to the end. Similarly for negatives. Likewise if a
signed formula of type B occurs, the branch is split and 8, is added to one fork
and f, to the other. Applying these branch extension rules is what corresponds
to the conversion to clause form in resolution theorem proving, but it is possible
for a tableau proof attempt to be successful before the construction has been carried
out to the atomic level. In effect, full conversion to clause form is not always
necessary.

A branch is called closed if it contains TP and- FP for some formula P. A tableau
is closed if every branch is closed. A closed tableau beginning with FX is a proof of
X. The intuition is, the assumption that X could be false has led to an impossible
situation, hence X must be true no matter what. It is shown in [16] that X is provable
using tableaux iff X is a tautology.

Figure 4 shows an example of a tableau proof, for the tautology (P > Q) v
(P o R)) (P> (Q v R)). We have numbered signed formula occurrences in
order to discuss the tableau; they are not part of the proof.
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F (P>Q)v (P>R)

>(P>(Q v R) ey

T (P>0)v (P>R) )

F P>(Q vV R 3)

T P @)

F Q VR (%)

F 0 (6)

F R N
T/P >0 8 T P>R (9
F P T Q F P T R
(10) (1) (12) (13)

Fig. 4.

In this tableau entry (1) is of the form FX where X is the formula we wish to prove.
Then entries (2) and (3) come from (1) by the « rule; (4) and (5) come from (3) by the
a rule; (6) and (7) come from (5) by the « rule again. Next (8) and (9) are from (2) by
the § rule; (10) and (11) are from (8) by the f§ rule; (12) and (13) are from (9) by the
p rule. Finally, considering the branches from left to right, branch closure is by: (4)
and (10); (6) and (11): (4) and (12); (7) and (13).

There are several remarks to be made, of both theoretical and practical interest.

As stated, it is allowed to apply a branch extension rule to a given formula
occurrence on a branch more than once. But in fact this is never necessary. Thus,
formulas can be removed from branches once they have been used, ensuring termination
of any tableau construction. _

The branch extension rules are inherently non-deterministic. We may choose which
branch, and which signed statement on that branch to work with next. Suppose we
call a deterministic ordering of branch extension rule applications for tableau
construction fair if, eventually, each non-atomic signed formula occurrence on each
branch has the appropriate rule applied to it. Any fair deterministic ordering must
produce a proof of a formula that is a tautology, though some fair orderings will do
so more quickly than others. It is here that heuristics begin to be applicable. In the
tableau of Figure 4, for instance, we always worked with o formulas before f
formulas. This is generally a good strategy.

As defined, a branch is closed if it contains a contradiction, TP and FP for
some P. Any fair deterministic ordering of branch extension rule applications must
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not only produce a proof of each tautology, but must, if carried out as far as possible,
produce a proof in which each tableau branch contains an atomic level contradiction.
This means that one can intermingle tests for closure with branch extension rule
applications, or one can wait until no more branch extension rules apply, then test for
closure. If we wait to test for closure, we may miss discovering that we had a closed
tableau at a considerably earlier stage. On the other hand, frequent testing for closure
is expensive. Again, this is a reasonable place for the application of heuristics. In the
propositional tableau implementation in Prolog, presented in Appendix 1, we have
adopted the following strategy. We test for closure before each branch extension rule
application. On each branch we deal with negations first, then conjunctions, then
disjunctions, and finally modalities. And within each of these classes we work with
topmost formulas on branches first. The frequent testing for closure can be changed
to a test delayed as long as possible by simply moving the Prolog clause that tests
for contradictions to the end position in the program. Likewise the order in which
branch extension rules are applied can be changed by changing the ordering of the
corresponding Prolog clauses.

It follows from the remarks above that semantic tableaux provide a decision
procedure for classical propositional logic. Use any fair ordering of rule applications,
remove a signed formula occurrence from a branch once a branch extension rule has
been applied to it, carry out branch extension rule applications until only atomic level
signed formulas are left, and follow this by a test for closure.

3. Modal Propositional Tableaux

We sketch tableau systems for four standard propositional modal logics, and then
consider implementation issues. A fuller discussion of these tableau systems can
be found in [5]. The logics we consider, as characterized by, the corresponding
conditions placed on the accessibility relation of their Kripke modél theory, are: K (no
conditions); K4 (transitivity); T (reflexivity); and S4 (transitivity and reflexivity). For
these logics the Kripke model theory does not require symmetry of the accessibility
relation. This is important for the style of tableau we use here. Of course, this leaves
out well-known logics like S5, but there are different styles of semantic tableaux
suitable for such logics; we shall say more about this later.

Syntactically, the set of formulas is enlarged by adding the operators O (necessity)
and < (possibility). Two new classifications of signed formulas are created, necessaries,
or v formulas, and possibles, or = formulas. These, and their single components, are
defined as follows.

v | vy T | I
TOX TX TOX | TX
FOX | FX FOX FX

Fig. 5.
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Again the intuition is simple. A v formula is true at a possible world I" iff v, is true
at all worlds accessible from I'. A z formula is true at a possible world I iff x, is true
at some world accessible from T,

Next we define an operation * on sets of signed formulas. The intuition is, if .S is
a set of signed formulas, and the members of S are true at a possible world I', then
the members of S$* should be true at any world accessible from I'. For example,
suppose the logicis K,and S = {TOX,TO Y, FO Z, TP A Q}. LetT be a possible
world of some Kripke K model, with all members of S true at I', and let A be an
arbitrary world, accessible from I'. It is easy to see that, since 70 X is true at I, then
TX must be true at A. Likewise, since FOZ is true at I', FZ must be true at A. But
in general we can say nothing about the behavior of ¥ or P A Q at A because
examples of K models can easily be produced that have quite arbitrary behavior on
these formulas. Thus all we can say for sure is that all the members of {TX . FZ} must
be true at A, and it is this set we take for S* in this case. In general, the definition of
* is logic dependent, and is given in the following chart.

Logic | S*
KT {wlvesS}
K4, S4 {v, wlve S}
Fig. 6.

The tableau rules, in addition to the classical ones of the previous section, are these.
First, for the logics T and S4 involving reflexivity, the rule

v

Vo
Fig. 7.

The intuition here is straightforward. Suppose the set of signed formulas on a
tableau branch is satisfied (simultaneously true at some possible world) and we apply
this rule, say on the v formula 70 X, adding v, to the branch, in this case, 7X. The
resulting set of formulas on the larger branch is still satisfiable, indeed at the same
world, because for the logics T and S4, if 1 X is true at a world sois X (O X > X is
valid in these logics).

Secondly, for all four modal logics we want the following rule, though the méeaning
of * differs from logic to logic. The intension is, if S U {n} is the set of signed
statements on a tableau branch, it may be replaced by S* U {=n,}.

S {n}
S* U {my}

Fig. 8.
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Again the intuition is the same as in the previous case, though the details are
trickier. Suppose the set of signed formulas on a tableau branch is satisfiable, and we
apply this rule. Say the set originally was S U {n} and we have replaced it with
S* U {m,}, and say the original set was satisfied at the possible world T. Since = is
true at I, it follows that there must be some world accessible from I', say A, at which
7, is true. Sinceé the members of S were all true at I', the members of S* will all be
true at A, as we observed earlier. Then the entire set of formulas on the revised branch
is still satisfiable, though at the world A instead of at I". Thus, like the resolution rule,
the tableau rules preserve satisfiability.

Definitions of closed tableau, and proof are the same as in the classical case. It is
shown in [5] that, for each of the four modal logics the corresponding tableau system
is sound and complete.

Here are two examples of modal tableau proofs. The first, Figure 9, is a proof in
the logic Kof O(X o Y) o (OX > OY).

FOX > Y)>(@X>0OY) (1)
TOMX > Y) )
FOX >0OY 3
TOX “
FOvY 5
Fig. 9a.
TX > Y (6)
TX )
FY (®)
FX/ \TY
® (10)
Fig. 9b.

(1) is the starting formula. (2) and (3) are from (1) by the « rule; (4) and (5) are
likewise from (3) by the a rule. Now we apply the = rule (from Figure 8) using (5) as
the = formula. The corresponding n, formula is (8), while (6) and (7) constitute S*,
where S consists of (1), (2), (3) and (4). Now a B rule application to (6) quickly
produces a closed tableau.

The second example, Figure 10, is a proof in S4 of OX > OO OX.

FOX > 000X . (D
TOX 2
Fooox 3)

Fig. 10a.
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TOXx e))
TX (5)
FoOox (6)
FOx 0

Fig. 10b.

(1) is the starting formula; (2) and (3) are from (1) by the « rule. Now, applying the
7 rule, taking (3) as the 7 formula, replaces (1), (2) and (3) by (4), (5) and (6). Finally,
applying the v rule (of Figure 7) to (6) produces (7) and a closed tableau.

Now, some remarks concerning issues of implementation. Just as in the propositional
case, the order in which we apply a, B and negation rules does not matter for
completeness, as long as we eventually apply them in all possible ways. So again,
heuristics are pertinent for the discovery of short proofs. And, as before, we can
remove a signed formula occurrence from a branch once an «, § or negation rule has
been applied to it. This is not the case with the v rule for the reflexive logics T and
54, however, since v formulas also figure in the definition of the * operation, and so
affect the n rule. Of course for these logics the v rule need not be used if v, already
occurs on the branch involved. In any event, use of the n rule should be postponed,
for reasons discussed in the following paragraph.

The = rule conceals destructive branching. If more than one = formula occurs on
a branch, an application of the 7 rule to one of them erases the others. Consequently,
an implementation of any of these tableau systems must ‘remember’ where such a
choice of = rule application has been made and, if a proof is not found, it must
backtrack to the choice point and try an alternative choice. For the non-transitive
logics K and T this is simple since every rule application involves a reduction in
formula degree, and so every sequence of branch extension rule applications must
terminate. Thus a depth-first search strategy is possible, and the tableau system with
backtracking provides a straightforward decision procedure.

For the transitive logics K4 and S4 things are quite different. For example, a branch
containing 7 X and 700 X will allow an infinite sequence of n rule applications.
Since all items on a branch must be signed subformulas of the formula we are trying
to prove, and a propositional formula has only a finite set of subformulas, any
(deterministic) sequence of branch extension rule applications that continues forever
must become periodic. In principle, by remembering all the stages we have passed
through we could include a test for periodicity, and backtrack when it has been
detected. Thus a tableau based decision procedure for the two transitive logics is
possible. In practice, however, such a test would be quite expensive.

A cheaper alternative to a periodicity test is to set a maximum modal depth on the
number of successive 7 rule applications allowed on a branch before backtracking is
forced. This amounts to doing a depth-first search to a preset depth. Of course we lose
decidability, but it is still the case that any formula that is K4 or S4 valid will have
a proof of some finite modal depth. Also, in the next section we turn to first-order logic
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where decidability is no longer an issue anyway. There a strategy of the sort just
discussed is quite reasonable. The most straightforward way to implement a modal
depth cut-off is to use a counter, but there is an alternative technique we consider below.

We have discussed independent tableau systems for each of the four logics we are
considering. But there is a different, and conceptually simpler strategy we can adopt.
The tableau system for K is straightforward to implement. And the other three logics
can be embedded into K in simple ways that are appropriate for mechanization! The
embeddings involve the notion of a positive or negative occurrence of a subformula,
which we assume is a familiar notion.

For the logic T: In an attempt to prove a formula X it is negative subformulas of
X of the form O A, and positive subformulas of X of the form ¢ A, that will give rise
to v rule applications in a T tableau for FX. Suppose we modify a formula X before
attempting to prove it, essentially by replacing each negative subformula O 4 by
(04) A A, and each positive subformula & A4 by (O 4) v A, thus building v rule
applications directly into the formula. A more precise definition is easily given using
signed formulas, whose signs keep track of positiveness and negativeness for us. Thus,
define a translation mapping T as follows. T(4) = A if A4 is signed atomic. T(x) = o,
where o has components «, and a,, T(a;) = o], T(,) = o3, and &’ is the (unique)
conjunctive signed formula whose components are «; and «;. Similarly for the g,
negative and 7 cases. And finally, for the v case, T(TOX) = T(OX’ A X’) where
TX = T(TX);and T(FO X) = F(O X’ v X')where FX' = T(FX).Itisnothard
to show that there is a closed tableau for FX in the logic T iff there is a closed tableau
for T(FX) in the logic K. Thus an implementation of the K tableau system directly
provides a proof system for T.

For the logic K4: Above we suggested the use of a modal depth counter, to bound
a depth-first search. This idea is at the heart of our embedding of K4 into K. We
define a map K4 with a number parameter, essentially as we-did in the T case
above, but now, in K4(X, n) every negative subformula of the form O A4 is replaced
by 04" A O*4" A ... A O"A4’, (parenthesized as convenient). Likewise, replace
every positive subformula of the form G Aby G A4 v O24" v ... v O"A’ Ttis
not hard to see that there is a closed K4 tableau for FX iff there is a closed tableau
for K4(FX, n) in K for some n. This can be proved using consistency properties, as in
[5]; we omit the argument here.

For the logic S4: Here we combine the two translations above. Define a mapping
S4 so that negative subformulas of the form O A are replaced by 4 A OA" A
0’4" A ... A O"A4’, and positive subformulas:of the form < A4 replaced by 4’ v
OA v QA v ... v O"A’. Then, there is a closed S4 tableau for FX iff there is
a closed K tableau for S4(FX, n) for some n.

4. Classical First-Order Tableaux

The propositional language of Section 2 is extended in the usual way. Constant and
Sunction symbols are added, the class of terms is defined, relation symbols are added,
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atomic formulas are defined to be relation symbols applied to the appropriate number
of terms, then formulas are built up using the connectives of Section 2 and the
quantifiers ¥V and 3. We omit details. (As formulated in [16], there were no function
symbols.) When we write ¢(x) we mean that ¢ is a formula with (at most) x free; then
() means the result of substituting the term ¢ for all free occurrences of x in ¢. For
the time being, we assume all formulas appearing in tableaux have no free variables
(as was the case in [16] as well).

We introduce two new categories of signed formulas, universals (or y) and existen-
tials (or 8). And with each one we define a collection of instances, one for each term.

| o 5| 6w
TV | To() TE)e) | To()
F@)e( | Fo® FYx)e() | Fo()

Fig. 11.

For proof purposes, a new collection of constant symbols, called parameters, is
introduced. We write L for the original first-order language, and L* for the larger
language allowing these extra constant symbols. Proofs are of formulas of L, but
involve formulas of L*.

Two additional branch extension rules are required. The intention is, if a y formula
occurs on a branch, y(f) may be added to the end for any closed term ¢, while if a §
formula occurs, §(c) may be added, where c is a parameter that has not already been
used on the branch. The rules are as follows.

y 0
o) 5(0)
any term ¢ new parameter ¢
Fig. 12.

A proof of X is still a closed tableau beginning with FX. It is shown in [16] that
tableaux provide a complete and sound proof procedure for classical first-order logic.

Figure 13 shows an example of a tableau proof for the formula (3x)(Vy)R(x, y) >
(V¥)3x)R(x, y). The language L contains, say, no function or constant symbols. We
use a, b, . . . for parameters.

F @x)(VWR(x, y) > (V)EX)R(, ») 1)
T (3x)(¥y)R(x, y) ' )
F (Vy)(@X)R(x, y) 3)
T (V¥)R(a, y) - @)
F (Ax)R(x, b) &)
T R(a, b) (6)
F R(a, b) N

Fig. 13.

L]
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In Figure 13, (2) and (3) are from (1) by the « rule. (4) is from (2) by the J rule, where
dis T(3x)(Vy)R(x, y), a is a parameter, of course new at this point of the proof, and
we have added d6(a), or T(Vy)R(a, y). Likewise (5) is from (3) by the ¢ rule. Finally
(6) and (7) are from (4) and (5) by the y rule.

As usual, the rules are non-deterministic. Call a deterministic order of branch
extension rule applications fair if, eventually each signed negative, a, § or 6 formmula
occurrence on each branch has the appropriate rule applied to it and, for a y formula
and for each closed term ¢ of L*, eventually the y rule is applied using the term ¢. It
is shown in [16] that any fair order of branch extension rule applications must produce
a proof of X if a proof of X exists, that is, if X is valid.

Except for y formulas, when a signed formula has been used on a branch, it can be
removed from the branch. But this is not the case with y formulas. In [16] a simple
example of a fair deterministic proof procedure is given: construct the tableau by
working with branches from left to right, starting over at the left again after the
right-most branch has been worked on. On each branch apply the appropriate rule
to the topmost formula, removing it from the branch if it is not a y formula. If it is
ay formula, use the first closed term ¢ of L* (in some pre-determined order) such that
y(1) does not occur on the branch, then remove the occurrence of y in question, and
add a new occurrence at the end of the branch.

The main mechanical difficulty is that the y rule allows us to use any closed term
t, and we have no guidance as to what is a good choice. One solution is to go from
y to y(x), where x is a new free variable, and later on use unification to determine what
choice of x will yield a closed branch. This leads to a further difficulty. If we don’t
know (until later via unification) what terms have been introduced on a branch, how
do we ensure the parameters in 0 rule applications will be new? One way out of
this difficulty is to introduce Skolem functions before commencing a proof, thus
avoiding the use of the J rule altogether. This works quite well, but it has the
disadvantage that it does not extend to the modal case, because of the general lack
of a Skolem normal form result. Instead we propose an alternative that, in the
classical case, essential amounts to a merging of the Skolemization construction with
the tableau construction. This alternative will extend to the modal setting with no
difficulties. _

The y and 6 rules given above are replaced by the following where, in the y rule, x
is a free variable new to the branch and, in the ¢ rule fis a function symbol new to
the branch, and x,, . . ., x, are all the free variables previously introduced on the
branch by the y rule. . -

Y 0
P(x) o(f(xy, - - -5 X))
new free new function
variable x symbol f

Fig. 14.
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Figure 15 presents a proof, using these new rules, of the formula (3x)(P(x) o
(Y¥)P(y)). We leave it to the reader to supply reasons for the steps this time. We use
Xy, X, . . . for free variables.

F@x)(P(x) = (V»)P(y) 1)
FP(z,) > (Yy)P(y) (2)
T P(z,) 3)
F (¥y)P(y) “)
FP(f(z,)) (%)
F P(z,) > (Vy)P(y) (6)
T P(z,) @)
F(Vy)P(y) ()
Fig. 15.

Now the substitution {z, — f(z,)} will produce a contradiction involving (5) and (7).
Notice that (1) was used twice.

Officially, we call a tableau closed if there is some substitution for the free variables
involved that produces a closed tableau in the earlier sense (every branch contains a
contradiction). And such a substitution can be found by a straightforward application
of unification. This assumes bound variables are renamed if necessary, to prevent
‘accidental capture’ of variables. The simplest way, though not the most efficient, to
guard against such capture is to apply these closing substitutions only at the atomic
level, where no quantifiers are present. This can be done without compromising
completeness. We have used this device in Appendix 2 in the-interests of simplicity.
We do not recommend it in general.

What we have now described can be thought of as the tableau analog of the method
of matings [2]. One caveat, however. If one is implementing this in Prolog, there is a
natural temptation to write the y rule in such a way that it infers y(x) from 7, where
x is a new Prolog variable, and then to use Prolog’s built-in unification in the search
for a closing substitution. This is simple and elegant to program. Unfortunately, it
does not work because Prolog leaves out the so-called occurs check, thus implement-
ing the unification algorithm incorrectly. And it is precisely the occurs check that
ensures the revised ¢ rule must introduce something new. The most straightforward
solution is to write a correct unification procedure of one’s own, in Prolog. Fortunately,
this is not too onerous. We use a version taken from [17] Chapter Ten, or equivalently,
[14]. .
With these revised rules, it is still the case that we cannot confine ourselves to
working with a y formula occurrence on a branch only once (or else we would have
decidability of first-order logic). We might adopt Smullyan’s device, described above,
of removing a y occurrence once used, and introducing a fresh occurrence at the



FIRST-ORDER MODAL TABLEAUX 203

branch end. But then an attempt to prove an unprovable formula may never terminate.
Smullyan’s idea can be combined with setting a maximum quantifier usage, specifying
how many times the revised y rule is to be applied to any given y formula. It is
surprising how often a quantifier usage of 1 turns out to work. (Restricting to
quantifier usage 1 is related to, but not the same as, the notion of direct predicate
calculus of [10].) While attaching a quantifier usage parameter to each y formula gives
rather fine control over proof search, it is simpler to implement a more global notion
of quantifier depth instead, specifying how many times the revised y rule is to be
applied on a branch, no matter to which y formulas. This is the approach we have
taken in the program given in Appendix 2. At any rate, a provable formula will be
provable using some finite quantifier usage, and also using some finite (generally
higher) quantifier depth.

We have now described a first-order proof procedure whose programming presents
no difficulties, and we can turn to the modal analog.

5. Modal First-Order Tableaux

Here things are extraordinarily easy. We get first-order modal proof procedures
by simply combining the techniques of Section 3 and Section 4. (Of course the
translations into K from Section 3 must be extended to cover the quantifier cases. This
is straightforward.) The resulting logics are ‘monotone’ in the sense that, in the Kripke
models, if world A is accessible from world I', then the domain of the first-order
structure associated with A must be an extension of that associated with I'. These
are not ‘constant domain’ models. In an axiomatic formulation of modal logics,
monotone logics are the ones that come up most naturally; extra axioms or rules
generally must be added to ensure constant domains.

We think the point has been made now, that tableau based formulations are natural
and simple to implement for those logics for which they exist, and they exist for a
wider variety of logics than just classical.

6. Concluding Remarks

There are well-known embeddings of Intuitionistic logic into S4. These, together with
the S4 tableau system above, yield proof procedures for this logic. Alternatively,
tableau systems designed directly for Intuitionistic logic exist [5], and are straight-
forward to implement. [6] has a resolution style system for Intuitionistic logic that was
designed by analogy with the tableau system. Similar resolution style systems for
modal logics can also be developed. Other resolution style systems based on different
ideas have been created; see [13] for references. It would be interesting to compare the
efficiency of these various systems.

The style of modal tableaux presented here does not lend itself well to logics whose
Kripke models involve symmetry, such as S5. This is a problem, since S5 is a logic
which has been widely used. But there is another generalization of tableaux which
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covers such logics easily; and also allows for constant domains. These tableau use
prefixed formulas. A description of them can be found in [4] and [5]. Recently, ideas
derived from prefixed tableaux have been used in an automated modal proof system
[18]. A comparison of implementation efficiency for logics having both kinds of
tableaux would be interesting.

Finally, the logics considered here each had single necessity operators. But it is no
problem to introduce an indexed family of necessity operators, which yield simple
logics of knowledge. Tableau implementation issues are unproblematic.

Appendix 1, Propositional K4

/* Tableau based theorem prover for the propositional modal logic K4.
Works by embedding K4 into K. Note that one must supply a ’modal depth’
parameter.

Melvin Fitting
January 11, 1987.
*/
/* Propositional operators are: and, or, neg and imp.
And, or are left associative;
imp is right associative.
Also there are signs, t and f,
and there are modal operators, box and dia.
Operator precedences used below assume a precedence range of
1-255. For an implementation of Prolog that uses a different range,
the operators defined below should be given precedences above ’not’,
’is’, etc. and below ’nospy’, comma, semicolon etc.
*/
7-op(100, fy, neg).
7-op(110, yfx, and).
?7-op(120, yfx, or).
?7-op(130, xfy, imp).
?-op(140, fx, [t,f]).
7-0p(100, %y, box). N
7-0p(100, fy, dia). .
/* remove(X, Y, Z) :- Z is the list resulting from removing all X
occurrences from the list Y.
*/
remove(X, [X | Xs], Ys) :- remove(X, Xs, V¥s).
remove(Z, [X | Xs], [X | ¥s]) :- X \= Z, remove(Z, Xs, Ys).
remove(X, [1, [I). :
/* append(X,Y,Z) :- X and Y appended yields Z.
*/ .
append([], L, L).
append([X|L1], L2, [XIL3]) :- append(L1, L2, L3).
/* member(X, Y) :~ X is a member of the list Y.
*/
member (X, [XI_1).
member (X, [_|Taill) :- member(X, Tail). .

/* Define the propositional formula types.
*/

conjunctive(t _ and _).

conjunctive(f _ or _).

conjunctive(f _ imp _).
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disjunctive(t _ or _).
disjunctive(f _ and _).
disjunctive(t _ imp _).
negative(t neg _).
negative(f neg _).
necessity(t box _).
necessity(f dia _).
possibility(t dia _).
possibility(f box _).
atomicfmla(X) :-
not negative(X),
not conjunctive(X),
not disjunctive(X),
not necessity(X),
not possibility(X).
/* components(F, One, Two) :-

signed formula F has One and Two as its components.

*/

components(f X and Y, £ X, f Y).
components(t X or Y, t X, t Y).
components(t X and Y, t X, t Y).
components(f X or Y, £ X, £ Y).
components(t X imp Y, £ X, t Y).

components(f X imp Y, t X, £ Y).

/* component(F, Dne) :-

signed formula F has One as its only component.

*/

component (t neg
component (f neg
component (t box
component(f box
component(t dia
component (f dia

bd D4 pd Dd B¢ 4
oot Hhoot ot Hh
54
~

*/

sharp([J, [0).

sharp([Head | Taill, New) :-
not necessity(Head),
sharp(Tail, New).

sharp([Head | Taill, [Newhead | Newtaill) :-

necessity(Head),
component (Head, Newhead),
sharp(Tail, Newtail).

/* closed(Tableau) :- Tableau can be continued to closure.

*/

closed([]).

closed([Branch|Rest]) :-
member (t X, Branch),
member (f X, Branch),
closed(Rest).

closed([Branch | Rest]) :-
member (Negation, Branch),
negative(Negation),

component(Negation, Positive),
remove(Negation, Branch, Tempbranch),

205

/* sharp(4, B) :- the sharp operation applied to branch A preduces branch B.
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append(Tempbranch, [Positive], Newbranch),

closed([Newbranch | Rest]).
closed([Branch | Rest])

member (Alpha, Branch),

conjunctive(Alpha),

components(Alpha, Alphaone, Alphatwo),

remove(Alpha, Branch, Tempbranch),

append(Tempbranch, [Alphaone, Alphatwo], Newbranch),

closed([Newbranch | Rest]).
closed([Branch | Rest]) :-

member (Beta, Branch),

disjunctive(Beta),

components(Beta, Betaone, Betatwo),

remove(Beta, Branch, Tempbranch),

append(Tempbranch, [Betaonel, Newone),

append (Tempbranch, [Betatwo], Newtwo),

closed([Newone, Newtwo | Rest]).
closed([Branch | Rest])

member (Pi, Branch),

possibility(Pi),

component(Pi, Pizero),

sharp(Branch, Temp),

append(Temp, [Pizero], Newbranch),

closed([Newbranch | Rest]).

/* Xk4tok(A, N, B) :-
A is a signed formula K4 formula and B is its translation into
K of ’'modal depth’ N.

*/
k4trans( t A, 1, t box 4 ).
k4trans( £ A, 1, f dia 4 ).
k4trans( t A, N, t box (4 and B))
N>1,
M is ¥-i,

k4trans( £+ A, M, t B).

k4trans( f A, N, f dia (4 or B)) :-
K>1, .
M is N-1, .
k4trans( £ A, M, f B).

k4tok(Negation, N, Newnegation) :-
negative(Negation),
component(Negation, Positive),
k4tok(Positive, N, Newpositive),
negative(Newnegation),
component (Newnegation, Newposxtlve)
kétok(Alpha, N, Newalpha) :-
conjunctive(Alpha),
components (Alpha, Alphaone, Alphatwo),
k4tok(Alphaone, N, Newalphaone),
k4tok(Alphatwo, N, Newalphatwo),
conjunctive(Newalpha),
components(Newalpha, Newalphaone, Newalphatwo).
k4tok(Beta, N, Newbeta)
disjunctive(Beta),
components(Beta, Betaone, Betatwo),
k4tok(Betaone, N, Newbetaone),
k4tok(Betatwo, N, Newbetatwo),
disjunctive(Newbeta),
components(Nevbeta, Newbetaone, Newbetatwo).
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k4tok(Pi, N, Newpi) :-
possibility(Pi),
component(Pi, Pizero),
k4tok(Pizero, N, Newpizero),
possibility(Newpi),
component(Newpi, Newpizero).

k4tok(Nu, N, Newnu) :-
necessity(Nu),
component (Nu, Nuzero),
k4tok(Nuzero, N, Newnuzero),
k4trans(Newnuzero, N, Newnu).

kdtok(Atomic, N, Atomic) :- atomicfmla(Atomic).
/* Now translate and test for theoremhood.

*/

test(X, N) :-

k4tok(f X, N, £ Y),
closed([[f Y1),
write(’Theorem of propositional K4 at modal depth ’),
write(N),
write(’.’),
nl.
test(X, N) :-
write(’Not a propositional K4 theorem at modal depth ’),
write(N),
write(’.’),
nl.

Appendix 2, First-Order K

/* Tableau based theorem prover for the First Order modal logic K.

Melvin Fitting
October 11, 1987.
*/
/* Operators.
And, Or are infix, left associative, .
Imp is infix, right associative,
Neg, box and dia are prefix.
Quantifiers are two place functions, all and some.
Sample formula: =2all(x, box some(y, r(x,y) imp neg dia p(x))).
To use program, issue query of the form
test(formula, number) where formula is the formula to
be tested, and number is the quantifier depth to be used.

In this version, unification is done explicitly, with an occurs check.
The unification routine is from Stirling and Shapiro’s book, Chapter Ten.
Also, a bound is placed on the number of times the Gamma rule can be used
on a branch, the ’Qdepth’. Further, a version of Skolemization is combined
with the tableau construction, consequently'we carry along a list of active ~
free variables. We say more about this below.

*/

?7-0op(100, fy, neg).

?7-op(110, yfx, and).

?7-op(120, yfx, or).

7-0p(130, xfy, imp).

7-op(140, fx, [t,£1).

7-op(100, fy, box).

7-op(100, fy, dia).
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/* remove(X, Y, 2)

from the list Y.

*/
remove(X, [X |
remove(Z, [X |

Xs], Ys) :- remove(X, Xs, Ys).

Xs], [X | Ys]) :- X \= Z, remove(Z, Xs, Ys).

remove(X, [1, [1).

/* append(X,Y,

*/

Z) :~ X and Y appended yields Z.

append([], L, L).
append([XiL1], L2, [XIL3]) :- append(L1, L2, L3).

/* member(X, Y)

*/

:- X is a member of the list Y.

member (X, [X[|_]).
member (X, [_|Taill) :- member(X, Tail).

/* Define formula types.

*/

conjunctive(t _

conjunctive(f

conjunctive(f _
disjunctive(t _
disjunctive(f _
disjunctive(t _

negative(t neg
negative(f neg

and _).
or _).
imp _).
or _).
and _).
imp _).
).
).

universal(t all(_,_)).
universal(f some(_,_)).

existential(t some(_,_)).
existential(f all(_,_)).

necessity(t box

2.

necessity(f dia _).

possibility(t dia ).
possibility(f box _.).

atomicfmla(X) :

not conjunctive(X),
not disjunctive(X),
not negative(X),
not universal(X),
not existential(X),
not necessity(X),
not possibility(X).

/* components(F, One, Two) :-

signed formula F has One and Two as its components.
*/
components(f X and Y, £ X, £ Y).
components(t X or Y, t X, t Y). )
components(t X and Y, ¢t X, t Y).
components(f X or Y, £ X, £ Y).
components(t X imp Y, £ X, t Y).

components(f X

imp ¥, t X, £ Y). -

/* component(F, One) :-
signed formula F has One as its only component.

*/

component(t neg X, £ X).

MELVIN FITTING

:= Z is the list resulting from removing all X occurrences
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component(f neg X, t X).
component(t box X, t X).
component(f box X, f X).
component(t dia X, t X).
component(f dia X, f X).

/* instance(F, Term, Ins) :-

F is a signed quantified formula, and Ins is the result of removing
the quantifier and replacing all free occurrences of the quantified
variable by occurrences of Term.

*/

instance(t all(X,Y), Term, t Z) :- sub(Term, X, Y, Z).
instance(f some(X,Y), Term, f Z) :- sub(Term, X, Y, 2).
instance(t some(X,Y), Term, t Z) :- sub(Term, X, Y, Z).
instance(f all(X,Y), Term, f Z) :- sub(Term, X, Y, Z).

/* sub(Term, Variable, Formula, Newformula) :-
Newformula is the result of substituting occurrences of Term
for each free occurrence of Variable in Formula.
*/
sub(Term, Variable, Formula, Newformula) :-
sub_(Term, Variable, Formula, Newformula) , !.

sub_(Term, Var, A, Term) :— Var ==

sub_(Term, Var, A, A) :- atomic(A).

sub_(Term, Var, neg X, neg Y) :-
sub_(Term, Var, X, Y).

sub_(Term, Var, X and Y, U and V) :~
sub_(Term, Var, X, U),
sub_(Term, Var, Y, V).

sub_(Term, Var, X or Y, U or V) :-
sub_(Term, Var, X, U),
sub_(Term, Var, Y, V).

sub_(Term, Var, X imp Y, U imp V) :-
sub_(Term, Var, X, U),
sub_(Term, Var, Y, V).

sub_(Term, Var, box X, box Y) :-
sub_(Term, Var, X, Y).

sub_(Term, Var, dia X, dia Y) :- )
sub_(Term, Var, X, Y),

sub_(Term, Var, all(Var, Y), all(Var, Y)).

sub_(Term, Var, all(X, Y), all(X, Z)) :-
sub_{(Term, Var, Y, Z).

sub_(Term, Var, some(Var, Y), some(Var, Y)).

sub_(Term, Var, some(X, Y), some(X, 2)) :-
sub_(Term, Var, Y, 2). .

sub_(Term, Var, Functor, Newfunctor) :-

Functor =.. [F | Arglist], .
sub_list(Term, Var, Arglist, Newarglist),
Newfunctor =.. [F | Newarglist].

sub_list(Term, Var, [Head | Taill, [Newhead | Newtaill) :-
sub_(Term, Var, Head, Newhead),
sub_list(Term, Var, Tail, Newtail).

sub_list(Term, Var, 1, [1).

/* In using the Delta rule we need a new function symbol
each time the rule is used. We take a Skolem function symbol
to be fun(n) where n is a number. The count, n, is remembered by
funcount. The main predicate here is sko_fun(X,Y), such
that X is a list of free variables, and Y is a previously
unused Skolem function applied to those free variables.

209
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*/

funcount(1).

newfuncount(N) :-
funcount(N),
retract(funcount(N)),
M is N+1,
assert (funcount (M)).

sko_fun(Varlist, Skoterm) :-
newfuncount (N),
Skoterm =.. [fun, N | Varlist].

/* Finally, we need something to restart the count of function symbols,
when necessary.
*/
reset :-
retract (funcount(_)),

assert(funcount(1)),
1.

/* unify(Termi, Term2) :-
Termi and Term2 are unified with the occurs check.
See Stirling and Shapiro, The Art of Prolog, Page 152.

*/
unify(X,Y) :~-

var(X), var(Y), X=Y.
unify(X,Y) :-

var(X), nonvar(Y), not_occurs_in{X,Y), X=Y.
unify(X,Y) :-

var(Y), nonvar(X), not_occurs_in(Y,X), Y=X.
unify(X,Y) :-

nonvar(X), nonvar(Y), atomic(X), atomic(Y), X=Y.
unify(X,Y) :-

nonvar(X), nonvar(Y), compound(X), compound(Y), term_unify(X,Y).
not_occurs_in(X,Y) :-

var(Y), X \== Y.
not_occurs_in(X,Y) :-

nonvar(Y), atomic(Y). .~
not_occurs_in(X,Y) :- -

nonvar(Y), compound(Y), functor(Y,F,N), not_occurs_in(N,X,Y).
not_occurs_in(N,X,Y) :~

N¥>0, arg(N,Y,Arg), not_occurs_in(X,Arg), N1 is N-1,

not_occurs_in(N1,X,Y).
not_occurs_in(C,X,Y) .

term_unify(X,Y) :~

functor(X,F,N), functor(Y,F,N), unify_args(N,X,Y).
unify_args(N,X,Y) :- .

N>0, unify_arg(N,X,Y), N1 is N-1, unify_args(N1,X,Y).
unify_args(0,X,Y).
unify_arg(¥,X,Y) :-

arg(N,X,ArgX), arg(N,Y,ArgY), unify(ArgX,ArgY¥).
compound(X) :- functor(X,_,N), N>O.

/* sharp(Branch, Newbranch) :- .
Newbranch is the result of applying the sharp operation to Branch.

. -

*/

sharp(0J, [1).

sharp( [Head | Taill, New) :-
not necessity(Head),
sharp(Tail, New).
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sharp( [Head | Taill, [Newhead | Newtaill)
necessity(Head),
component (Head, Newhead),
sharp(Tail, Newtail).

¥ /x A tableau is a list of notated branches. A notated branch is a
pair, [varlist, branch], where branch is the list of signed formulas
that make up the branch in the ordinary sense, and varlist is the list
of free variables that have been introduced during the construction
of that branch. We use Prolog variables for these free variables.

closed(Tableaun, Qdepth) :=-
Tableau can be continued to closure, using a quantifier depth
of Qdepth for Gamma rule applications.
*/
closed([], ).
closed([[Varlist, Branch] | Rest], Qdepth) :-
member(t X, Branch),
atomicfmla(X),
member(f Y, Branch),
unify(X, Y)closed(Rest, Qdepth),.
closed([[Varlist, Branch] | Rest], Qdepth) :-
member (Negation, Branch),
negative(Negation),
component(Negation, Positive),
remove(Negation, Branch, Tempbranch),
append(Tempbranch, [Positive], Newbranch),
closed([[Varlist , Newbranch] | Rest], Qdepth).
closed([[Varlist, Brarnch] | Rest], Qdepth) :-
member (Alpha, Branch),
conjunctive(Alpha),
components(Alpha, Alphaone, Alphatwo),
remove (Alpha, Branch, Temp),
append(Temp, [Alphaone, Alphatwol, Newbranch),
closed([[Varlist, Newbranch]l | Rest], Qdepth).
closed([[Varlist, Branch] | Rest], Qdepth)
member (Beta, Branch),
disjunctive(Beta), .-
components{Beta, Betaone, Betatwo),
remove(Beta, Branch, Temp),
append(Temp, [Betaone], Newone),
append(Temp, [Betatwol, Newtwo),
closed([ [Varlist, Newone], [Varlist, Newtwo] | Rest ], Qdepth).
closed([[Varlist, Branch] | Rest], Qdepth) :-
member(Delta, Branch),
existential(Delta),
sko_fun(Varlist, Term),
instance(Delta, Term, Deltains),
remove(Delta, Branch, Temp),
append(Temp, [Deltains]), Newbranch),
closed([[Varlist, Newbranch] | Rest], Qdepth)
closed([[Varlist, Branch]l | Rest], Qdepth) :-

Qdepth>0,
member (Gamma, Branch),
universal(Gamma), )

remove(Gamma, Branch, Temp),

Newvarlist = [V | Varlist],

instance(Gamma, V, Gammains),

append(Temp, [Gammains, Gamma], Newbranch),
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N is Qdepth-1,
closed([[Newvarlist, Newbranch] | Rest], N).
closed([[Varlist, Branch] | Rest], Qdepth) :-
member (Pi, Branch),
possibility(Pi),
component(Pi, Pizero),
sharp(Branch, Temp),
append(Temp, [Pizero], Newbranch),
closed([[Varlist, Newbranch] | Rest], Qdepth).
/* Finally, the driver.
*/
test(X, Qdepth) :-
reset,

closed([ [[],[£f XJ] ], Qdepth),
write(’First Order K theorem at Qdepth ’),

write(Qdepth),
write(’.?),
nl.

test(X, Qdepth) :-
write(’Not a First Order K theorem at Qdepth ),
write(Qdepth),
write(’.?),
nl.
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