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Abstract

Relatively recently nested sequent systems for modal logics have come to be seen as an attractive deep
reasoning extension of familiar sequent calculi. In an earlier paper I showed there was a strong connection
between modal nested sequents and modal prefixed tableaux. In this paper I show the connection
continues to intuitionistic logic, both standard and constant domain, relating nested intuitionistic sequent
calculi to intuitionistic prefixed tableaux. Modal nested sequent machinery generalizes one sided sequent
calculi—intuitionistic nested sequents similarly generalize two sided sequents. It is noteworthy that
the resulting system for constant domain intuitionistic logic is particularly simple. It amounts to a
combination of intuitionistic propositional rules and classical quantifier rules, a combination that is
known to be inadequate when conventional intuitionistic sequent systems are used.
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1 Introduction

There has been much interest in deep reasoning systems. Recently a simple variety of such calculi has
become rather popular. In 2009 Brünnler introduced nested sequent systems, [1, 2], and at the same time
Poggliolesi introduced tree hypersequents, [18]. While they use different syntax, they are essentially the same,
and are independent reinventions of the nested sequents of Kashima, [14], from 1994. These are one-sided
sequent systems, but in which sequents can appear nested within sequents, and rules can be applied at
any depth. Some modal logics that lack conventional sequent calculi have natual nested sequent calculi.
Strong connections have been shown between nested sequents and prefixed tableaux, [10]. Prefixed tableaux
themselves go back to 1972, [6]. Essentially, nested sequents are to prefixed tableau systems as conventional
sequents are to conventional tableau systems,

The nesting paradigm has been extended to intuitionistic logic using two-sided sequents rather than
one-sided as in the modal case. A version was introduced for propositional bi-intuitionistic logic, BiInt,
in 2008, [11]. BiInt is an extension of intuitionistic logic with a connective A excludes B, whose Kripke
semantics involves the converse of the standard reflexive and transitive accessibility relation of intuitionistic
logic. This, of course, provides a nested sequent calculus for propositional intuitionistic logic too. An explicit
cut-elimination procedure is given in [11], and issues of contraction are carefully considered. In 2009 these
ideas were further refined, [19], and an implementation was given, http://users.cecs.anu.edu.au/ linda/.

In 1983 a prefixed tableau system for propositional intuitionistic logic was sketched in [7, Chapter Nine,
Section 5]. This converts to nested sequents much as happens in the modal setting, and the resulting rules
are essentially those of [19]. Here we present both nested sequent rules and prefixed tableau rules, prove
soundness and completeness directly for prefixed tableaux, and derive it for the nested sequent version via
a translation procedure. Of course this gives a non-constructive proof of cut elimination—as noted above, a
constructive version has already been shown in [11]—but the non-constructive version is easy to follow and
quite intuitive.

We build on this by adding quantifier rules. As it turns out, the simplest first-order extension does
not give intuitionistic logic proper, but the constant domain version of it. Constant domain intuitionistic
logic was introduced by Grzegorczyk in [13], axiomatized independently in [16] and in [12], and given a
rather complex sequent calculus formulation in [15], with further developments in [4]. Constant domain
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intuitionistic logic is an interesting logic, and the proof procedures we give here are remarkably simple and
straightforward. The constant domain system, either in prefix tableau form or in nested sequent form, is
probably the main contribution of this paper. After considering constant domain intuitionistic logic, we then
sketch how to modify the formalism to get standard first-order intuitionistic logic.

I want to thank an anonymous referee for information about the history of nested sequent systems. The
subject has had a much more complex development than I was previously aware of.

2 Syntax

The language of first-order intuitionistic logic is standard. Atomic formulas are relation symbols applied to
the appropriate number of variables—we do not allow constant or function symbols here, though doing so
would be straightforward. Then formulas are built up using ∧, ∨, ¬, ⊃, ∀ and ∃ in the usual way. We do not
take ⊥ as primitive, though it would be simple to do so, making ¬ defined. We begin our treatment with
propositional intuitionistic logic, where we ignore the role of quantifiers.

Sequents, in the conventional sense, can be defined using sets, multisets, or sequences of formulas. Dif-
ferent choices depend on details of the intended applications. Simplicity appropriate to the present paper
suggests the use of sets so that structural rules are not needed, or considered. Then a sequent is Γ → ∆,
where Γ and ∆ are sets of formulas. (Actually this is a bit too informal, since putting an arrow between sets
of formulas is meaningless. Think of Γ→ ∆ as an ordered pair of sets of formulas, with the arrow denoting
a pairing function.) But sequents are not quite the subject here, instead it is the following generalization.

Definition 2.1 Nested sequents are defined recursively. A nested sequent is Γ → ∆ where Γ is a set of
formulas and ∆ is a set of formulas and nested sequents.

Note that nesting is only on the right side of the arrow. Some special notation, common in the nested
sequent community, will be useful here. If Γ → ∆ occurs within another nested sequent we will write it as
[Γ → ∆] and refer to it as a boxed sequent. As is customary with sequents formulated using sets, the curly
brackets for the set on the left and the set on the right of the arrow will be omitted. Here is an example:

A→ B, [C → D, [E → F ]], [G→ H, [I → J ]]]

is a nested sequent, where the letters stand for formulas. Written entirely in standard set notation (with
arrow as a pairing function), this is the following.

{A} → {B, {C} → {D, {E} → {F}}, {G} → {H, {I} → {J}}}

The set notation version is ‘official,’ and a translation procedure in Section 7 will be defined using it. The
abbreviated notation with square brackets will be used whenever possible, in the interest of readability.

One final point—we do not allow the empty sequent, ∅ → ∅. It could be worked in, but it does not
correspond to any prefixed tableau configuration and so is best omitted here.

There is an informal BHK (Brouwer, Heyting, Kolmogorov) style reading for nested sequents. Let us
say we have a proof of a nested sequent Γ → ∆ if we have an algorithm that takes as input proofs of all
members of Γ and outputs a proof of some member of ∆. For example, a proof of A,B → C, [D,E → F ] is
an algorithm that converts proofs of A and B either into a proof of C, or into a proof of D,E → F , which
would be an algorithm that converts proofs of D and E into a proof of F .

3 Propositional Intuitionistic Nested Sequent Rules

Quantifier rules are postponed until Section 8. The essence of the present work is already apparent at the
propositional level. In stating our formal system we use a simple subscript convention: Γ2, ∆2, . . . are sets
of formulas and boxed sequents, and Γ1, ∆1, . . . are sets of formulas only—no boxed sequents. Thus set
subscripts are either 1 or 2, and 1 means no boxed sequents are present. Suppose A is a single formula or
a boxed sequent, and Σ is a set of formulas and boxed sequents. We write Σ, A as a more readable version
of Σ ∪ {A}. We do not assume A /∈ Σ—we are working with sets and do not track contraction applications
here.
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Axioms An axiom is defined recursively, as follows. First, Γ1, X → Γ2, X is an axiom, where X is a formula.
(It is enough to restrict X to being atomic.) Second, Γ1 → Γ2, [S] is an axiom if S is an axiom.

For example, A → [B → [C,D → C,E]] is an axiom. Next are the rules of inference. The intention is that
these rules apply not only at the top level, but also to any nested sequent below the top level as well. We
begin with the ordinary rules. These are the same as classical, except for allowing the presence of boxed
sequents on the right of arrows and, most importantly, being applicable at arbitrary nesting depth. That is,
they may be applied to any nested sequent no matter how deep the nesting.

Ordinary Sequent Rules

L∧
Γ1, A,B → Γ2

Γ1, A ∧B → Γ2

R∧
Γ1 → Γ2, A Γ1 → Γ2, B

Γ1 → Γ2, A ∧B

L∨
Γ1, A→ Γ2 Γ1, B → Γ2

Γ1, A ∨B → Γ2

R∨
Γ1 → Γ2, A,B

Γ1 → Γ2, A ∨B

L¬
Γ1 → Γ2, A

Γ1,¬A→ Γ2

L ⊃
Γ1 → Γ2, A Γ1, B → Γ2

Γ1, A ⊃ B → Γ2

Next we have the special rules, explicitly involving boxed sequents.

Special Sequent Rules

R¬
Γ1 → Γ2, [A→]

Γ1 → Γ2,¬A
R ⊃

Γ1 → Γ2, [A→ B]

Γ1 → Γ2, A ⊃ B

Lift
Γ1 → Γ2, [∆1, A→ ∆2]

Γ1, A→ Γ2, [∆1 → ∆2]

Some comments about the special rules. Given the intuitive BHK reading of proof for nested sequents, the
R ⊃ rule simply reflects the usual understanding of implication, and similarly for R¬. Something related to
the R ⊃ rule occurs in [20], where nested occurrences of ` are briefly considered. A rule stated there infers
Γ ` A ⊃ B from Γ ` (A ` B), but this nesting is not pursued further in the paper. In particular, nesting
of nested occurrences is not considered. A paper of Došen, [3], considers nesting of the consequence relation
to arbitrary depths, but the exact relationship between this and nested sequents remains to be determined.
The R ⊃ rule as we gave it appears in [19] modulo some differences in notation.

The rule called Lift is somewhat akin to the s-m-n theorem. Suppose the sequent above the line has
been verified, that is we have an algorithm, call it A, that converts proofs of the members of Γ1 into a proof
of some member of Γ2 or else into a proof of ∆1, A→ ∆2. We modify that algorithm into one we call A′, to
verify the sequent below the line. Here is the description of A′. Suppose we are given proofs of the members
of Γ1, along with a proof of A. Since we have proofs of the members of Γ1, we can feed these to A. If the
output is a proof of some member of Γ2, that is taken to be the output of A′. Otherwise the output must
be an algorithm verifying ∆1, A → ∆2. Modify that algorithm by supplying it with the given proof of A,
thus converting it into an algorithm that only needs as inputs proofs of the members of ∆1. This algorithm
verifies ∆1 → ∆2, and is taken to be the output of A′.

Example 3.1 Here is a proof in this system, of the following formula.

(¬¬A ∧ ¬¬(B ∧D)) ⊃ ¬(¬(A ∨ C) ∨ ¬B)
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Reasons for each step are given within the displayed structure. Upper leaves are axioms.

→ [→ [¬¬(B ∧D), [A→ A,C]]]
→ [→ [¬¬(B ∧D), [A→ A ∨ C]]] R∨

→ [→ [¬¬(B ∧D), [¬(A ∨ C), A→]]] L¬

→ [→ [¬¬(B ∧D),¬(A ∨ C)→ [A→]]]
Lift

→ [→ [¬¬(B ∧D),¬(A ∨ C)→ ¬A]] R¬

→ [→ [¬¬A,¬¬(B ∧D),¬(A ∨ C)→]] L¬

→ [→ [¬¬A→ [B,D,¬B → B]]]
→ [→ [¬¬A→ [B ∧D,¬B → B]]] L∧

→ [→ [¬¬A→ [B ∧D,¬B →]]] L¬

→ [→ [¬¬A,¬B → [B ∧D →]]]
Lift

→ [→ [¬¬A,¬B → ¬(B ∧D)]] R¬

→ [→ [¬¬A,¬¬(B ∧D),¬B →]] L¬

→ [→ [¬¬A,¬¬(B ∧D),¬(A ∨ C) ∨ ¬B →]] L∨

→ [→ [¬¬A ∧ ¬¬(B ∧D),¬(A ∨ C) ∨ ¬B →]] L∧

→ [¬¬A ∧ ¬¬(B ∧D)→ [¬(A ∨ C) ∨ ¬B →]]
Lift

→ [¬¬A ∧ ¬¬(B ∧D)→ ¬(¬(A ∨ C) ∨ ¬B)] R¬

→ (¬¬A ∧ ¬¬(B ∧D)) ⊃ ¬(¬(A ∨ C) ∨ ¬B)
R ⊃

4 Sequent Soundness

We assume Kripke intuitionistic models are familiar items, and do not give a definition here. Soundness of
the system with respect to Kripke models may be shown as follows. Let us say Γ → ∆ is true at a state
of a Kripke model if one of the members of Γ is not forced at that state, or one of the members of ∆ is.
Equivalently, Γ→ ∆ is true at a state provided, if all members of Γ are forced there, so is some member of
∆. And let us say a boxed sequent, [S], is true at a state provided the sequent S is true at that state and
at every state accessible from it.

It is easy to check that each of the rules, regular and specal, preserves not just validity but truth at
a state. Note that verifying this for Lift makes use of the fact that, in a Kripke intuitionistic model, any
formula forced at a state is also forced at all accessible states. Since the axioms are valid sequents, it follows
that only validities are provable.

5 Propositional Prefixed Intuitionistic Tableaus

In [10] it was shown that, for a variety of modal logics, nested sequent systems and prefixed tableaux are
equivalent in the same way that Gentzen sequent systems and standard tableau systems are equlvalent—
one is the other ‘upsidedown.’ Nested sequent modal systems are described in [1, 2], and with different
notation and terminology in [18]. Prefixed tableaux for modal logics are discussed in [9]. There is a similar
relationship between the nested sequent system for intuitionistic logic given above, and a prefixed tableau
system for intuitionistic logic. Such a prefixed tableau system was never published in detail, but there is a
brief sketch of it in [7, Chapter Nine, Section 5]. Since completeness for the tableau system is rather easy to
show, we describe the tableau version in some detail, sketch a completeness argument for it, and show how
this implies completeness for the nested sequent system.

Occurring in prefixed tableau proofs are prefixed, signed formulas. Prefixed formulas originated in [5] for
a natural deduction system. Think of a prefix as a name for a possible world or state; the syntax of these
names will provide us with a representation of the accessibility relation for a Kripke intuitionistic model.

A prefix is a non-empty finite sequence of positive integers starting with 1, such as 1.3.2.1.4, which
we write using periods as separators. If n is a positive integer and σ is a prefix, by σ.n we mean the
result of adjoining n to the end of σ. Think of prefixes as representing possible stages in the work of a
mathematician—an intuitionistic mathematician say. Think of the actual world as 1; and σ.n as a possible
next stage to σ for the mathematician, it is one of the states that could immediately succeed σ, depending
on what work the mathematician chooses to carry out.

A signed formula is T X or F X, where X is a formula. Think of T X as asserting that X has been
proved, and F X as asserting that X has not yet been proved—an intuitionistic version of truth. A prefixed
signed formula is of the form σ T X or σ F X where σ is a prefix and X is a formula. Think of σ T X as
saying X has been proved at state σ, and σ F X as saying that X has not been proved at state σ. Of course
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all this is quite informal, but it will serve as a guide. This intuition plays no direct role in the completeness
argument of Section 6.

A tableau proof is a tree (written with the root at the top) meeting certain conditions, in which each
node is labeled with a prefixed signed formula. We give rules for starting, continuing, and terminating a
proof construction. The intuitive idea is that to prove X we suppose there is some state, call it 1, where X
has not been proved, we derive a contradiction, and we conclude X. Informally if X is, in fact, provable by
an intuitionistically oriented mathematician, at some point a proof may be discovered. Since we could take
1 to be that time point, we would have an impossible situation.

Formally, a tableau proof of X begins with the trivial tree with only a root node, labeled 1F X. Next
we have the branch extension rules, for continuing the tableau construction. Just as with nested sequents,
these divide into ordinary and special cases.

Ordinary Tableau Rules

T∧ σ T A ∧B
σ T A

σ T B

F∧ σ F A ∧B
σ F A | σ F B

T∨ σ T A ∨B
σ T A | σ T B

F∨ σ F A ∨B
σ F A

σ F B

T¬ σ T ¬A
σ F A

T ⊃ σ T A ⊃ B
σ F A | σ T B

And then there are the special tableau rules.

Special Tableau Rules
F¬ σ F ¬A

σ.nT A
σ.n new

F ⊃ σ F A ⊃ B
σ.nT A
σ.nF B
σ.n new

Lower σ T A
σ.n T A

σ.n not new

A prefix σ.n is new if it does not occur as an initial segment, proper or not, of any prefix on the branch
where the rule is being applied. Similarly, σ.n is not new if it does already occur on the branch. Intuitive
motivation is quite direct. For example, if F A ⊃ B is the case at the world named by σ in a Kripke model,
we understand that A ⊃ B is not forced at that world. Then by the usual workings of Kripke models there
must be a world accessible from that world, at which A is forced but B is not, that is, at which we have T A
and F B. We can assign this world a prefix name; σ.n appropriately reflects the accessibility relation, but the
name must be otherwise uncommitted, hence the newness condition in the F ⊃ rule. Similar considerations
apply to the other two special rules. Lower corresponds to Lift for the sequent system—it embodies the idea
that formulas forced at a state are forced at all accessible states.

A tableau branch is closed if it contains both σ T X and σ F X for some formula X. A tableau is closed
if each branch is closed. A closed tableau that starts with 1F X is a proof of X.

Example 5.1 Here is a proof in the tableau system, of the same formula as in Example 3.1, (¬¬A∧¬¬(B∧
D)) ⊃ ¬(¬(A ∨ C) ∨ ¬B).
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1 F (¬¬A ∧ ¬¬(B ∧D)) ⊃ ¬(¬(A ∨ C) ∨ ¬B) 1.
1.1 T ¬¬A ∧ ¬¬(B ∧D) 2.
1.1 F ¬(¬(A ∨ C) ∨ ¬B) 3.
1.1.1T ¬(A ∨ C) ∨ ¬B 4.
1.1.1T ¬¬A ∧ ¬¬(B ∧D) 5.
1.1.1T ¬¬A 6.
1.1.1T ¬¬(B ∧D) 7.

l
l

l
l

ll

,
,

,
,

,,

1.1.1 T ¬(A ∨ C) 8.
1.1.1 F ¬A 10.
1.1.1.1T A 11.
1.1.1.1T ¬(A ∨ C) 12.
1.1.1.1F A ∨ C 13.
1.1.1.1F A 14.
1.1.1.1F C 15.

1.1.1 T ¬B 9.
1.1.1 F ¬(B ∧D) 16.
1.1.1.1T B ∧D 17.
1.1.1.1T ¬B 18.
1.1.1.1F B 19.
1.1.1.1T B 20.
1.1.1.1T D 21.

Reasons for each step are as follows; formulas are numbered for this purpose. 2 and 3 are from 1 by F ⊃
(note that 1.1 is new); 4 is from 3 by F¬, again 1.1.1 is new; 5 is from 2 by Lower ; 6 and 7 are from 5 by
T∧; 8 and 9 are from 4 by T∨; 10 is from 6 by T¬; 11 is from 10 by F¬; 12 is from 8 by Lower ; 13 is from
12 by T¬; 14 and 15 are from 13 by F∨; 16 is from 7 by T¬; 17 is from 16 by F¬; 18 is from 9 by Lower ;
19 is from 18 by T¬; 20 and 21 are from 17 by T∧. Closure is by 11 and 14, and by 19 and 20.

There are some important restrictions that can be placed on rule usage, without compromising complete-
ness.

Definition 5.2 A tableau branch is atomically closed if it contains σ T A and σ F A, where A is atomic; a
tableau is atomically closed if each branch is.

A tableau is single-usage if no F¬ or F ⊃ rule is applied to a prefixed signed formula occurrence more
than once on a tableau branch.

It is the F¬ and F ⊃ rules that introduce new prefixes, so requiring single-usage is a restriction on prefix
introduction. Imposing atomic closure and single-usage restrictions does not change the class of theorems;
the completeness proof in Section 6 will be shown with these restrictions in place, soundness whether or not
they are in place.

6 Propositional Tableau Soundness and Completeness

Soundness of the tableau system is by an argument that is standard for tableaux. We briefly sketch the
ideas.

Call a set S of prefixed signed formulas satisfiable if there is a Kripke intuitionistic model M and a
mapping p from prefixes occurring in S to states in the model, meeting the following conditions. 1) if σ and
σ.n both occur in S, then p(σ.n) is accessible from p(σ). 2) if σ T X ∈ S then X is forced at the state p(σ).
3) if σ F X ∈ S then X is not forced at the state p(σ).

Call a tableau branch satisfiable if the set of prefixed signed formulas on it is satisfiable, and call a tableau
satisfiable if one of its branches is. It is not hard to show that if a tableau rule is applied to a satisfiable
tableau, the result is another satisfiable tableau.

Now, suppose X is not valid. It follows that {1F X} is a satisfiable set, so any attempt to prove X
begins with a satisfiable tableau. Then all subsequent tableaux must be satisfiable. Since a satisfiable
tableau cannot be closed, X does not have a proof. The tableau system is sound.
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Completeness is more interesting. This can be shown using a systematic proof search method, which
also yields propositional decidability. Instead we use a Lindenbaum/Henkin construction, which is easier to
describe. It is along the lines of a similar completeness argument for prefixed modal tableaux in [9].

We now allow tableaux to start with a finite set of prefixed signed formulas instead of with a single
one. Call a set S of prefixed signed formulas consistent if no tableau for any finite subset of S is closed,
where closure must be atomic and tableau construction is single-usage. Call S prefix complete provided that
first, σ F A ⊃ B ∈ S implies that σ.k T A, σ.k F B ∈ S for some integer k and second, σ F ¬A ∈ S implies
that σ.k T A ∈ S for some integer k. (Prefix completeness is analogous to the existence of Henkin witnesses
for existential statements in the common proof of completeness for first-order classical logic.) Every finite
consistent set S of prefixed signed formulas can be extended to a set that is maximally consistent and prefix
complete. This is the outcome of the following construction.

Propositional Extension Construction Suppose S is a finite consistent set of prefixed signed formulas.
Enumerate the (countably many) prefixed signed formulas of the language, σ1 X1, σ2 X2, . . . , and define
the following sequence of sets. σn.k new means the prefix does not occur in Sn.

S0 = S

Sn+1 =



Sn ∪ {σn Xn} if Sn ∪ {σn Xn} is consistent
and Xn is not
F A ⊃ B or F ¬A

Sn ∪ {σn Xn, σn.k T A, σn.k F B} if Sn ∪ {σn Xn} is consistent,
Xn is F A ⊃ B,
and σn.k is new

Sn ∪ {σn Xn, σn.k T A} if Sn ∪ {σn Xn} is consistent,
Xn is F ¬A, and σn.k is new

Sn otherwise

Informally, the construction really amounts to this. If σn Xn is consistent with Sn, add it, and throw in
whatever else is required for prefix completeness, and otherwise σn Xn is not consistent with Sn, so don’t
add it.

In cases 2 and 3 of this construction some integer k is chosen so that σn.k does not occur in Sn. If S is
finite then each Sn will also be finite, hence the ‘newness’ requirements can always be met. In cases 1 and
4 it is obvious that Sn+1 is consistent if Sn is, but this is not so clear with cases 2 and 3. We now verify it
for case 3; case 2 is similar.

Suppose Sn ∪ {σn F ¬A, σn.k T A} is not consistent, where σn.k does not occur in Sn. We show that
Sn ∪{σn F ¬A} is also not consistent, so case 3 does not apply. By assumption there is an atomically closed
single-usage tableau T for Sn ∪ {σn F ¬A, σn.k T A}. Even though the set we are starting with already
includes σn.k T A, the F¬ rule still might have been applied to σn F ¬A on one or more branches in tableau
T . Suppose that on some branch the rule was applied, to add σn.mT A, where σn.m was new at this point of
the tableau construction. In σn.mT A and in its descendants, replace occurrences of σn.m with occurrences
of σn.k (this introduces an extra copy of σn.k T A which can be eliminated). It is not hard to show the
resulting tableau is still correctly constructed. In a similar way, substitute away any other applications of
the F¬ rule to σn F ¬A until none are left.

We now have an atomically closed tableau for the set Sn ∪ {σn F ¬A, σn.k T A} in which no tableau
rule is applied to σn F ¬A, let us call the tableau T ′. We use it to construct a new tableau for the set
Sn ∪ {σn F ¬A}. Begin the tableau with these formulas, then use the F¬ rule to add σn.k T A, and then
continue exactly as in tableau T ′. Since no rule was applied to σn F ¬A in T , in the new tableau exactly one
rule application is made to it. And otherwise the single-usage restriction is met in the new tableau as well,
since it was in T . We now have an atomically closed tableau for Sn ∪ {σn F ¬A}, meeting the single-usage
restriction, thus demonstrating inconsistency.
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Let M = ∪nSn. It is straightforward that M is maximally consistent and prefix complete. This ends the
discussion of the Propositional Extension Construction.

A maximally consistent and prefix complete set satisfies what we might call downward saturation prop-
erties. As one instance, if M is such a set and σ T X ∨Y ∈M , then either σ T X ∈M or σ T Y ∈M . Here is
a sketch of the proof. Suppose σ T X ∨ Y ∈M but σ T X 6∈M and σ T Y 6∈M . Using maximal consistency,
there must be finite subsets M1,M2 of M so that M1 ∪ {σ T X} and M2 ∪ {σ T Y } are inconsistent. Let
M0 = M1 ∪M2 ∪ {σ T X ∨ Y } ⊆ M . Then both M0 ∪ {σ T X} and M0 ∪ {σ T Y } are inconsistent, and so
have closed tableaus. We use this to show M0 has a closed tableau and hence M is inconsistent. Start a
tableau with M0. Since M0 contains σ T X ∨ Y , immediately branch to σ T X and σ T Y . On the branch
containing σ T X carry out the steps of the closed tableau for M0 ∪ {σ T X}, and on the branch containing
σ T Y carry out the steps of the closed tableau for M0 ∪ {σ T Y }. In this way we get a closed tableau for
M0, contradicting the consistency of M ..

By arguments like this one can show the following.

Lemma 6.1 (Downward Saturation) Let M be a maximally consistent and prefix complete set. The
following holds.

1. σ T X ∧ Y ∈M ⇒ σ T X ∈M and σ T Y ∈M

2. σ F X ∧ Y ∈M ⇒ σ F X ∈M or σ F Y ∈M

3. σ T X ∨ Y ∈M ⇒ σ T X ∈M or σ T Y ∈M

4. σ F X ∨ Y ∈M ⇒ σ F X ∈M and σ F Y ∈M

5. σ T X ⊃ Y ∈M ⇒ σ F X ∈M or σ T Y ∈M

6. σ F X ⊃ Y ∈M ⇒ σ.k T X ∈M and σ.k F Y ∈M for some k

7. σ T ¬X ∈M ⇒ σ F X ∈M

8. σ F ¬X ∈M ⇒ σ.k T X ∈M for some k

9. σ T X ∈M ⇒ σ.n T X ∈M for every σ.n occurring in M

Now suppose X is not provable using the prefixed intuitionistic tableau rules, requiring atomic closure and
single-usage. Then there is no closed tableau beginning with 1F X, so {1F X} is consistent, and obviously
finite. Extend it to a maximally consistent, prefix complete set, M , using the Propositional Extension
Construction above. We construct a Kripke intuitionistic model from M . Let the set of states be the set of
prefixes that occur in M . For the accessibility relation, suppose τ and σ are states. These are also prefixes,
and we set τRσ if τ is an initial segment of σ, not necessarily proper. For an atomic formula P , let P be
true at state σ if σ T P ∈M . This gives us a Kripke intuitionistic model, let us call it M.

Now a truth lemma is straightforward to prove using the Downward Saturation Lemma 6.1—details are
omitted here. It says: for every formula X, the following is true.

σ T X ∈M =⇒ X is forced at world σ in the model M
σ F X ∈M =⇒ X is not forced at world σ in the model M

Once we have this completeness is immediate. M extends {1F X} and so X is false at world 1 of the model
M.

7 Prefixed Tableaus to Nested Sequents

Tableau completeness has been proved, or at least sketched. Now completeness for the intuitionistic propo-
sitional nested sequent system follows once it has been shown that every tableau proof converts to a nested
sequent proof. (Conversion in the other direction is also possible, but it is harder to describe and we omit it
here.) For the conversion details we adapt the machinery of [10], where a similar result for modal logics was
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shown. The ideas are simple. Formulas signed with T go on the left of an arrow, formulas signed with F go
on the right. Signed formulas with the same prefix go together in a single nested sequent. Signed formulas
prefixed with 1 become members of the ‘top level’ nested sequent. And otherwise, the nested sequent of
formulas that were originally prefixed with σ.n should appear as a boxed subsequent of the nested sequent of
formulas that were originally prefixed with σ. In the formal statement of the translation we allow the empty
prefix, and identify a signed formula having an empty prefix with the signed formula itself. In our tableau
proofs all prefixed signed formulas have prefixes that start with 1, something that is assumed in the overall
translation process, but during the course of the translation prefixes that start with something other than 1
are allowed. In the following we write X for an arbitrary signed formula.

Definition 7.1 Let S be a finite set of prefixed signed formulas, allowing the empty prefix and prefixes
starting with an integer that is not 1.

1. For each positive integer n let Sn = {σX | n.σX ∈ S}, where n.σ is the prefix σ with n added at the
beginning.

2. Let S◦ be the sequent {X | T X ∈ S} → {Y | F Y ∈ S} ∪ {(Sn)◦ | Sn 6= ∅}
(The condition T X ∈ S implies that T X has the empty prefix; similarly for F Y ∈ S.)

Now let S be a set of prefixed signed formulas where no prefix is empty and all prefixes start with 1. The
nested sequent translate of S is N (S) =df (S1)◦.

Note that in item 2 of the translation, on the left of the arrow only formulas appear, while on the right
there are formulas and also sets of the form (Sn)◦. These sets are themselves nested sequents, so all nesting
is thus on the right of the arrow.

Example 7.2 We show the conversion of the following set of prefixed signed formulas into a nested sequent.

S = {1T A, 1F B, 1.1T C, 1.1F D, 1.1.1T E, 1.1.1F F,
1.2T G, 1.2F H, 1.2.1T I, 1.2.1F J}

The conversion is as follows.

S1 = {T A,F B, 1T C, 1F D, 1.1T E, 1.1F F,
2T G, 2F H, 2.1T I, 2.1F J}

(S1)◦ = {A} → {B, {T C, F D, 1T E, 1F F}◦,
{T G,F H, 1T I, 1F J}◦}

{T C,F D, 1T E, 1F F}◦ = {C} → {D, {T E, F F}◦}
= {C} → {D, {E} → {F}}

{T G,F H, 1T I, 1F J}◦ = {G} → {H, {T I, F J}◦}
= {G} → {H, {I} → {J}}

and so

N (S) = (S1)◦ = {A} → {B, {C} → {D, {E} → {F}},
{G} → {H, {I} → {J}}}

Written using boxed sequent notation, N (S) is the following.

A→ B, [C → D, [E → F ]], [G→ H, [I → J ]]

This is the example nested sequent given in Section 2.

We have shown how to convert a finite set of prefixed signed formulas into a nested sequent. If we
identify a tableau branch with the set of prefixed signed formulas on it, then a tableau branch converts to a
nested sequent. If we identify a tableau with the set of its branches, an entire tableau converts to a set of
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nested sequents. Going further, if we think of the process of constructing a tableau proof as the creation of a
succession of tableaux, until we arrive at one that is closed, then such a succession of tableaux converts into
a succession of sets of nested sequents. It is easy to see that a closed tableau branch converts to a nested
sequent that is an axiom; hence a closed tableau converts to a set of nested sequent axioms. Finally, if a
succession of nested sequents arising from the construction of a tableau proof is ‘turned over,’ the result will
be a proof in the nested sequent intuitionistic calculus. Once this is checked, completeness of the nested
sequent intuitionistic system follows from the completeness of the prefixed tableau calculus, which was shown
in Section 6.

Basically, it is enough to show that each one of the tableau rules turns into a nested sequent rule under
the convert-and-turn-over process described above. We show this for two representative rules and omit the
rest, and our discussion for these cases is, essentially, just a sketch. We have chosen the two implication
rules.

Representative Case, T ⊃ The tableau rule is:

σ T A ⊃ B
σ F A | σ T B

All signed formulas mentioned in the rule have the same prefix, so under the tableau translation
described above they all map to the same nested context. Suppose we translate the tableau branch
before the rule is applied, and we just consider the nested sequent corresponding to formulas whose
prefix begins with (or is) σ. We will get something of the form Γ1, A ⊃ B → Γ2, where Γ1 consists
of formulas and Γ2 consists of formulas and nested sequents. Likewise the translates of the branches
after the tableau rule has been applied are: Γ1, A ⊃ B → Γ2, A and Γ1, A ⊃ B,B → Γ2. When the
rule application is ‘turned over,’ this becomes rule L ⊃, one of the ordinary sequent rules. (Recall we
discussed earlier that a formula like A ⊃ B is allowed to be a member of Γ1, so displaying it as we
have here, or not displaying it as we did when stating the rule makes no significant difference.)

Representative Case, F ⊃ The tableau rule is:

σ F A ⊃ B
σ.nT A
σ.nF B
σ.n new

As in the previous case, we translate the tableau branch before the rule is applied and consider only the
nested sequent corresponding to formulas whose prefix begins with σ. We get something of the form
Γ1 → Γ2, A ⊃ B. When translating the tableau branch after the rule is applied, recall that formulas
prefixed with σ.n will appear in a boxed sequent nested inside the sequent corresponding to formulas
prefixed with σ. Further, since σ.n was required to be new only A and B can occur in the nested boxed
subsequent. Carrying out the translation we get Γ1 → Γ2, A ⊃ B, [A → B]. Now, reversing the roles
of rule premise and rule conclusion we get

Γ1 → Γ2, A ⊃ B, [A→ B]
Γ1 → Γ2, A ⊃ B

and this is special sequent rule R ⊃ (understanding A ⊃ B to be a member of Γ2).

Each tableau rule converts to a sequent rule, hence tableau proofs convert to sequent proofs, and we have
completeness of the sequent calculus.

As an illustration, the tableau proof in Example 5.1 converts into the sequent proof in Example 3.1.

8 Adding Quantifiers, Constant Domains

We have been discussing proof systems for propositional intuitionistic logic. Adding quantifiers to this is
easy, and can be done so that two different logics result. Before getting into details, we note that we follow
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a common convention and extend the language for the purpose of creating proofs. More specifically, when
proving a first-order formula X we extend the language by adding an infinite set of new free variables, called
parameters, which do not appear quantified. Parameters occur in proofs, but not in what is being proved.
This avoids annoying problems with inadvertent capture of variables by quantifiers during an instantiation.

We begin, not with first-order intuitionistic logic, but with constant domain intuitionistic logic, which
is captured quite easily using the present machinery. Semantically this logic is characterized by Kripke
first-order intuitionistic models in which the domain of quantification is constant across all possible worlds.
The logic was introduced by Grzegorczyk in [13]. It is axiomatized by adding to a standard axiomatization
of intuitionistic first-order logic the axiom schema (∀x)(A∨B(x)) ⊃ (A∨ (∀x)B(x)), where x does not occur
free in A. This axiomatization was proved complete independently in [16] and in [12]. There is a sequent
calculus for the logic in [15], but it is somewhat complex; also see [4]. Producing a simple sequent calculus or
a tableau calculus for the logic has been a mildly nagging problem for some time. See [8] for some personal
history concerning this point.

If we take a standard sequent calculus for propositional intuitionistic logic, say the one of Beth, and add
classical quantifier rules, we get a system that is sound for constant domain intuitionistic logic. But it is not
complete or, putting it differently, cut elimination does not hold. As a simple example, (∀x)(A ∨ B(x)) ⊃
(A∨ (C ⊃ (∀x)B(x))) is valid in all constant domain models, but a simple examination of all cases shows it
will not be provable in an intuitionistic propositional + classical quantifier sequent calculus.

Rather remarkably, adding classical quantifier rules to either our prefixed tableau or our nested sequent
system for propositional intuitionistic logic produces a calculus that is sound and complete with respect
to constant domain semantics. We begin with the prefixed tableau version. The following quantifier rules
should be added to the propositional tableau rules given in Section 5. In stating the rules, a is a parameter,
and it is called new if it does not occur on the tableau branch on which the rule is being applied.

Tableau Constant Domain Quantifier Rules

T∃ σ T (∃x)ϕ(x)
σ T ϕ(a)
a new

F∃ σ F (∃x)ϕ(x)
σ F ϕ(a)

any a

T∀ σ T (∀x)ϕ(x)
σ T ϕ(a)

any a

F∀ σ F (∀x)ϕ(x)
σ F ϕ(a)
a new

Next we have the nested sequent version, extending the propositional system of Section 3. As in the
propositional case, these rules apply to nested sequents and not just at the top level. In the rules, a is a
parameter, and it is said not to occur in the conclusion of a rule application if it does not appear in any
formula of the conclusion. But keep in mind, the rules as stated are abbreviated. The premise and conclusion
explicitly shown may occur nested within a larger sequent—that is, they may appear in a context. It is the
entire conclusion that must be taken into account, the context as well, and not just the portion shown in
the statement of the rule.

Nested Sequent Constant Domain Quantifier Rules

L∃ Γ1, ϕ(a)→ Γ2

Γ1, (∃x)ϕ(x)→ Γ2

a not in conclusion

R∃ Γ1 → Γ2, ϕ(a)
Γ1 → Γ2, (∃x)ϕ(x)

any a

L∀ Γ1, ϕ(a)→ Γ2

Γ1, (∀x)ϕ(x)→ Γ2

any a

R∀ Γ1 → Γ2, ϕ(a)
Γ1 → Γ2, (∀x)ϕ(x)
a not in conclusion
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It should be clear that the sequent rules are the tableau rules inverted, as described in Section 7. Sound-
ness for both tableaus and nested sequents is easy to show, and we say no more about it. Tableau complete-
ness can be shown by adding ‘quantifier witness’ cases to the Propositional Extension Construction from
Section 6. Now the construction should read as follows. In it, parameter a is new if it does not occur in Sn

or in σn Xn.

Constant Domain Extension Construction

S0 = S

Sn+1 =



Sn ∪ {σn Xn} if Sn ∪ {σn Xn} is consistent
and Xn is not
F A ⊃ B or F ¬A

Sn ∪ {σn Xn, σn.k T A, σn.k F B} if Sn ∪ {σn Xn} is consistent,
Xn is F A ⊃ B,
and σn.k is new

Sn ∪ {σn Xn, σn.k T A} if Sn ∪ {σn Xn} is consistent,
Xn is F ¬A, and σn.k is new

Sn ∪ {σn Xn, σn T A(a)} if Sn ∪ {σn Xn} is consistent,
Xn is T (∃x)A(x), and
a is new

Sn ∪ {σn Xn, σn F A(a)} if Sn ∪ {σn Xn} is consistent,
Xn is F (∀x)A(x), and
a is new

Sn otherwise

As in the propositional case, one can show by this construction that any finite consistent set of prefixed
formulas can be extended to one that is maximally consistent, prefix complete, and E complete, that is, it
contains a witness for every true existential or false universal formula. Indeed, in the definition of consistency
we can restrict rule applications of T∃ and F∀ to be single-usage, along the lines of Definition 5.2. One then
constructs a model from a maximally consistent, prefix complete, E complete set, in which the quantifier
domain is the collection of all parameters, and the possible worlds are the prefixes, as before. The details
are straightforward and are omitted here, but a similar construction for modal logics is discussed in [9].
Completeness for the nested sequent calculus then follows by translation, just as in the propositional setting.

Here are some parallel examples: proofs in both systems of the formula (∀x)(A ∨ B(x)) ⊃ (A ∨ (C ⊃
(∀x)B(x))).

Example 8.1 A tableau proof of (∀x)(A ∨ B(x)) ⊃ (A ∨ (C ⊃ (∀x)B(x))). Items 2 and 3 are from 1 by
F ⊃; 4 and 5 are from 3 by F∨; 6 and 7 are from 5 by F ⊃; 8 is from 7 by F∀, a is new to the branch at this
point; 9 is from 2 by T∀, which allows any parameter; 10 and 11 are from 9 by T∨; 12 is from 11 by Lower.
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1 F (∀x)(A ∨B(x)) ⊃ (A ∨ (C ⊃ (∀x)B(x))) 1.
1.1 T (∀x)(A ∨B(x)) 2.
1.1 F A ∨ (C ⊃ (∀x)B(x)) 3.
1.1 F A 4.
1.1 F C ⊃ (∀x)B(x) 5.
1.1.1T C 6.
1.1.1F (∀x)B(x) 7.
1.1.1F B(a) 8.
1.1 T A ∨B(a) 9.

l
l

l
l

ll

,
,

,
,

,,

1.1T A 10. 1.1 T B(a) 11.
1.1.1T B(a) 12.

Next is a nested sequent example, giving the tableau proof from Example 8.1 as converted to the sequent
system. Note that in the application of the R∀ rule, the parameter a does not occur in the conclusion. That
is, it does not occur in → [(∀x)(A ∨ B(x)) → A, [C → (∀x)B(x)]]. It is not sufficient that a not occur in
C → (∀x)B(x), the entire conclusion must be taken into account.

Example 8.2 A nested sequent proof of (∀x)(A ∨B(x)) ⊃ (A ∨ (C ⊃ (∀x)B(x))).

→ [A→ A, [C → B(a)]]
→ [→ A, [B(a), C → B(a)]]]
→ [B(a)→ A, [C → B(a)]]

Lift

→ [A ∨B(a)→ A, [C → B(a)]] L∨

→ [(∀x)(A ∨B(x))→ A, [C → B(a)]] L∀

→ [(∀x)(A ∨B(x))→ A, [C → (∀x)B(x)]] R∀

→ [(∀x)(A ∨B(x))→ A,C ⊃ (∀x)B(x)]
R ⊃

→ [(∀x)(A ∨B(x))→ (A ∨ (C ⊃ (∀x)B(x)))] R∨

→ (∀x)(A ∨B(x)) ⊃ (A ∨ (C ⊃ (∀x)B(x)))
R ⊃

9 Intuitionistic Logic Proper

As we have seen, constant domain intuitionistic logic has a simple and natural formulation using prefixed
tableaux or nested sequents. Similar formulations of intuitionistic logic proper, using this machinery, are a
bit more complex. Of course intuitionistic logic has familiar conventional tableau and sequent systems of
long standing. Still, formulating intuitionistic logic using nesting or prefixes is of some independent interest,
and so we present it now.

There are, in fact, two different ways (at least) that intuitionistic first-order logic can be formalized using
present machinery. Both have their merits and detriments. We treat them in separate subsections.

9.1 Adding an Existence Predicate

This approach simply embeds first-order intuitionistic logic into the constant domain version of Section 8.
Suppose we set aside a one-place predicate symbol, say E(x), and understand it as an existence predicate
in the sense of [21]. For a formula X, let XE be X with quantifiers relativized to E(x), that is, [(∀x)ϕ]E is
(∀x)(E(x) ⊃ ϕE) and [(∃x)ϕ]E is (∃x)(E(x)∧ϕE). Then, essentially, to prove X intuitionistically, we prove
XE in one of the constant domain systems of Section 8.

There is, however, one minor complication. We still need to ensure that the domain of each possible
world is non-empty. Models constructed during the course of a completeness proof have a tree structure, so
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by monotonicity it is enough to have the root world’s domain be non-empty. This leads us to the following
official version.

Intuitionistic First-Order Prefixed E Tableaus An intuitionistic proof of X is a closed constant do-
main tableau beginning with the two formulas 1T (∃x)E(x) and 1F XE .

Intuitionistic First-Order E Nested Sequents An intuitionistic proof of X is a constant domain nested
sequent proof of the sequent (∃x)E(x)→ XE .

Completeness is quite straightforward to show. Essentially, if X is not provable there is a constant domain
countermodel for XE . Convert this to a standard intuitionistic model by setting the domain of each possible
world to be the set of things to which E applies at that world. The rules Lift for nested sequents and Lower
for prefixed tableaux give us the monotonicity property for domains that intuitionistic semantics requires.
And we have directly built in the requirement that domains be non-empty. We omit details.

The formula (A ∨ (∀x)B(x)) ⊃ (∀x)(A ∨ B(x)) is provable, when relativized to E(x) and using the
constant domain rules. It is illustrative to carry out proofs of the relativized version in both the tableau and
the sequent systems.

9.2 Restricting Instantiation

Instead of introducing an existence predicate one can work with formulas as given, but one must complicate
the universal instantiation rules from Section 8 a bit.

Definition 9.1 Let S be a set of prefixed signed formulas. Call a parameter a available for prefix σ in S if
a occurs in the formula part of some member of S whose prefix is an initial segment of σ (the initial segment
need not be proper). Also a is new in S if it does not occur in the formula part of any member of S.

For a tableau branch, parameter a is available for σ on the branch if it is available for σ in the set of
prefixed signed formulas appearing on the branch. Similarly for a being new on a branch.

Now, here are the tableau quantifier rules. The terms available and new refer to the branch on which
the rule is applied.

Direct Intuitionistic Tableau Quantifier Rules

T∃ σ T (∃x)ϕ(x)
σ T ϕ(a)
a new

F∃ σ F (∃x)ϕ(x)
σ F ϕ(a)

a available for σ
or a new

T∀ σ T (∀x)ϕ(x)
σ T ϕ(a)

a available for σ
or a new

F∀ σ F (∀x)ϕ(x)
σ.nF ϕ(a)
a new

and σ.n new

Direct Intuitionistic First-Order Prefixed Tableaux A direct intuitionistic proof of X is a closed pre-
fixed tableau beginning with 1F X, using the Direct Intuitionistic Tableau Quantifier Rules given above
and the propositional rules from Section 5.

Example 9.2 First we note that Example 8.1 is not a correct tableau under the present Direct rules, because
the step introducing item 9 is no longer allowed. At this point in the tableau construction the parameter a
is not new since it occurs in item 8, and a is not available at parameter 1.1 since it only occurs in a signed
formula with prefix 1.1.1, which is not an initial segment of 1.1.
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Second, here is an example of a tableau proof using the Direct quantifier rules. It is a proof of (∀x)A(x) ⊃
¬(∃x)¬A(x).

1 F (∀x)A(x) ⊃ ¬(∃x)¬A(x) 1.
1.1 T (∀x)A(x) 2.
1.1 F ¬(∃x)¬A(x) 3.
1.1.1T (∃x)¬A(x) 4.
1.1.1T ¬A(a) 5.
1.1.1F A(a) 6.
1.1.1T (∀x)A(x) 7.
1.1.1T A(a) 8.

Items 2 and 3 are from 1 by T ⊃; 4 is from 3 by F¬; 5 is from 4 by T∃ (a is new at this point); 6 is from 5
by T¬. At this point we cannot apply Direct rule T∀ to item 2 to add 1.1T A(a), since a is not an available
parameter at prefix 1.1, but we can use Lower on 2 to add 7. Then since a is available at 1.1.1, we can use
T∀ on 7 to add 8. Closure is by 6 and 8.

We sketch an argument for tableau soundness. The argument for propositional soundness in Section 6
must be enhanced in order to take the quantificational machinery into account. Recall, Kripke first-order
intuitionistic models associate a domain with each state, and add the requirement of monotonicity: if state
w2 is accessible from state w1 then the domain associated with w1 is a subset of that associated with w2.
Quantification at each state is with respect to the domain associated with that state.

The definition of tableau satisfiability from Section 6 is modified as follows. Now call a set S of prefixed
signed formulas satisfiable if there is a first-order Kripke intuitionistic model M, a mapping p from prefixes
occurring in S to states in the model, and a mapping d from parameters occurring in S to members occurring
in domains of the model, all meeting the following conditions. 1) If σ and σ.n both occur in S, then p(σ.n)
is accessible from p(σ). 2) If σX is in S and parameter a occurs in X then d(a) is in the quantifier domain
the model associates with p(σ). 3) If σ T X ∈ S then X is forced at the state p(σ). 4) if σ F X ∈ S then
X is not forced at the state p(σ). As before, call a tableau branch satisfiable if the set of prefixed signed
formulas on it is satisfiable, and call a tableau satisfiable if one of its branches is. It must be shown that if a
tableau rule is applied to a satisfiable tableau, the result is another satisfiable tableau. We verify one rule,
T ∀; the rest are similar or easier.

Suppose a tableau branch is satisfiable and σ T (∀x)A(x) occurs on the branch. We show the branch is
still satisfiable after adding σ T A(a) where a is available at σ on the branch, and also where a is new to the
branch. Since the original branch is satisfiable, there is a Kripke model and mappings p and d meeting the
conditions outlined above. Suppose first that a is available at σ on the branch. Then there is some prefixed
signed formula τ X already on the branch, with a occurring in X and with τ being an initial segment of σ.
Then d(a) is in the domain associated with state p(τ). Since τ is an initial segment of σ, in the model p(σ)
is accessible from p(τ) and hence by monotonicity d(a) is also in the domain associated with p(σ). Since
σ T (∀x)A(x) is on the branch, (∀x)A(x) is forced at state p(σ). It now follows that A(a) is also forced at
state p(σ), and hence the branch extended with σ T A(a) is satisfiable. The second case, where a is new, is
simpler. We can simply extend d by mapping a to any member of the domain associated with p(σ). We
omit details.

Next we turn to completeness. The proof is much like the one sketched in Section 8. We want to extend
a consistent set to one that is maximally consistent, prefix complete, and E complete, as before, but there
are two changes. First the definition of consistency, while still apparently reading the same, has changed its
meaning. A set is consistent if no tableau for a finite subset closes, but the tableau now must be constructed in
accordance with the Direct Intuitionistic Quantifier Rules—in particular, availability conditions are imposed.
The second issue is that, if we construct a sequence of sets Sn as before, starting with a finite consistent set,
as work continues more parameters can become available for a given prefix, so more applications of T ∀ and
F ∃ become possible. This must be taken into account.

We use the definition of the Sn sequence as given in Section 8, understanding that consistency has a
revised meaning. But we make an alteration.

Definition 9.3 For a set P of prefixed signed formulas, by the universal saturation of P we mean the result
of: 1) adding to P all signed formulas σ T A(a) such that σ T (∀x)A(x) is in P and a is a parameter that is
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available for σ in P , and 2) adding to P all signed formulas σ F A(a) such that σ F (∃x)A(x) is in P and a
is a parameter that is available for σ in P .

The definition of the Sn sequence from Section 8 is modified so that, at each stage, Sn+1 is enlarged to
its universal saturation.

Let us write M for ∪nSn and think of it as the limit of the Sn sequence. A first-order intuitionistic model
can be constructed from M , and then a truth lemma can be proved. Here are the significant points. As
usual, the states are the prefixes, and accessibility corresponds to initial-segment-of. For each prefix/state σ,
the domain associated with that state consists of all parameters that are available for σ in M . Parameters
designate themselves, as usual. This is familiar ground and we leave the remaining details to the reader.

Next, we convert these notions and rules to the nested sequent setting. We omit all discussion of soundness
and completeness.

Definition 9.4 Let Γ1 → Γ2 be a nested sequent. Any parameter a that occurs in some formula of Γ1 or
Γ2 is said to be available in this sequent and in all its boxed subsequents (no matter how deeply nested).

For instance, consider the sequent A→ B(a), [C → D(b), [E → F ]]. The parameter a is available in the
entire sequent and in the nested subsequents C → D(b), [E → F ] and E → F . The parameter b is available
in C → D(b), [E → F ] and in E → F .

Direct Intuitionistic Nested Sequent Quantifier Rules

L∃ Γ1, ϕ(a)→ Γ2

Γ1, (∃x)ϕ(x)→ Γ2

a not in conclusion

R∃ Γ1 → Γ2, ϕ(a)
Γ1 → Γ2, (∃x)ϕ(x)

a available in conclusion
or a not in conclusion

L∀ Γ1, ϕ(a)→ Γ2

Γ1, (∀x)ϕ(x)→ Γ2

a available in conclusion
or a not in conclusion

R∀ Γ1 → Γ2, [→ ϕ(a)]
Γ1 → Γ2, (∀x)ϕ(x)
a not in conclusion

Direct Intuitionistic First-Order Nested Sequents An intuitionistic proof of X is a nested sequent
proof of the sequent → X using the Direct Intuitionistic Nested Sequent Quantifier Rules given above.

Example 9.5 Here is an intuitionistic nested sequent using the Direct quantifier rules, of (∀x)A(x) ⊃
¬(∃x)¬A(x). It is translated from the tableau proof in Example 9.2.

→ [→ [A(a)→ A(a)]]
→ [→ [(∀x)A(x)→ A(a)]] L∀

→ [(∀x)A(x)→ [→ A(a)]]
Lift

→ [(∀x)A(x)→ [¬A(a)→]] L¬

→ [(∀x)A(x)→ [(∃x)¬A(x)→]] L∃

→ [(∀x)A(x)→ ¬(∃x)¬A(x)] R¬

→ (∀x)A(x) ⊃ ¬(∃x)¬A(x)
R ⊃

10 Conclusion

The family of logics having nested sequent systems is under much current investigation. Constant domain
intuitionistic logic is now seen to be in this family. The nested sequent system is of a simple nature and,
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rather surprisingly, amounts to a propositional intuitionistic nested sequent system, plus classical quantifier
rules, a combination known not to work for conventional sequent systems. The connection between prefixed
tableaux and nested sequents, known from modal logic, extends to the intuitionistic case too.

For many years the status of interpolation for constant domain intuitionistic logic was an open problem.
It has recently been established that it does not hold, [17]. It has long been known to hold for intuitionistic
logic itself. It would be interesting to see if the proof systems of this paper can help shed some light on this
difference.

References
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[2] K. Brünnler. Nested Sequents. Habilitation thesis, Institut für Informatik und angewandte Mathematik,
Universität Bern, 2010.

[3] K. Došen. Sequent-Systems for modal logic. Journal of Symbolic Logic, 50:149–168, 1985.

[4] C. Fiorentini and P. Miglioli. A cut-free sequent calculus for the logic of constant domains with a limited
amount of duplications. Logic Journal of IGPL, 7(6):733–753, 1999.

[5] F. Fitch. Tree proofs in modal logic. Journal of Symbolic Logic, 31:152, 1966. (abstract).

[6] M. C. Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic,
13:237–247, 1972.

[7] M. C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht,
1983.

[8] M. C. Fitting. A mistake on my part. In S. Artemov, H. Berringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in honour of Dov Gabbay, volume 1, pages 665–669.
College Publications, 2005.

[9] M. C. Fitting. Modal proof theory. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook
of Modal Logic, chapter 2, pages 85–138. Elsevier, 2007.

[10] M. C. Fitting. Prefixed tableaus and nested sequents. Annals of Pure and Applied Logic, 163:291–313,
2012. Available on-line at http://dx.doi.org/10.1016/j.apal.2011.09.004.
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