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§ 1. Introduction

In classical logic to some extent both HERBRAND’S Theorem [3] and SMULLYAN’Ss
Fundamental Theorem [6] accomplish the same thing. Each substitutes for the
problem of first-order provability of a given formula the problem of proving one
of an infinite sequence of formulas in propositional logic, and they both do so con-
structively. They differ in the manner of associating the infinite sequence of formulas
with the given one, but their overall effect is similar. We had entertained hopes of
proving a natural analog of one or both of these theorems for the modal logic 84,
partly because of its relationship to forcing [1]. Unfortunately, it seems impossible
to do so. The parameters involved in the classical logic SMULLYAN’s Theorem, for
example, have characteristics of epsilon-terms, and there are reasons why analogs
of such things can not be introduced into S4. See [2] for a discussion of this poin.
Fortunately, using a device of STALNAKER and THOMASON [7, 8] one can produce
a logic, closely related to S4, in which the things needed can be introduced.

We begin this paper then with an informal discussion of the model theory of
a logic clearly related to first order S4, a very natural logic to consider by any
standards (we call it AS4). Having used model theory to make clear what we have
in mind, we then formulate 1S4 syntactically (indeed we do not use model theory
in any of our proofs). Next we prove constructively that 1S4 and more ordinary
first-order S4 have the same constant-free theorems. Then we state and prove
constructively an analog of SMuLLYAN’s Fundamental Theorem for 184, reducing
the problem of provability to that of provability of one of an infinite sequence of
formulas in the propositional part of 1S4.

Possibly the main value of this paper lies in the introduction of the logic 1S4.
It is a natural logic to study, as well as a fruitful one, as the Fundamental Theorem
evidences. Indeed, we hope in a future paper to produce & natural analog of
HereraND’s Theorem for it. We believe there are many interesting things to be

.discovered concerning 1S4 and we hope this paper stimulates work on them.

.

§ 2. The Logic 184

We assume the reader is familiar with the KripKE model theory for first-order
S4 (without the BarcAN formula) [4, 5]. Starting from this we develop, in & highly
informal manner, a model theory for a logic we call AS4. This model theory can,
of course, be developed rigorously but we need it only for motivation.

1) This research was supported by City University of New York Faculty Research Program,
Grant number 1324.
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2 MELVIN FITTING

Associated with each of the possible worlds of a KrrpkE S4 model is a non-
empty set of constants. These may be thought of as the ‘‘things” of that world.
Thus (32) X (x) is true in a given possible world provided X (c) is true there, where
¢ is a constant associated with that world, that is, provided X () is true of some
“thing” in that world. Following STALNAKER and THOMASON (7, 8] we introduce
a second kind of constant into the language of S4, a ““name” constant. (We shall
use the phrase thing-constant for the standard kind of constant above.) STALNAKER
and THOMASON discuss ‘‘Miss America’’ and ‘““The President of the United States’’
as informal examples, names naming different things in different possible worlds.
Formally a name-consiant, f, is a function defined on the collection of possible worlds
of a KripKE S4 model (more precisely, on Z%-closed subcollections) having the
property that if I" is a possible world, f(I") is a thing constant associated with I
Informally we shall say f names the thing {(I") in the world I

Next we must specify when formulas involving these name constants are true in
possible worlds. We would like to say, simply, X (f) is true in the world I" provided
X () is true of the thing which f names in I'. Unfortunately, this immediately leads
to an ambiguity in the case of OX (f). To say CX(f) is true in the world I" could
mean 1) OX(f(I")) is true in I', and so X (f(I")) is true in some world possible rela-
tive to I', or 2) X (f) is true in some world possible relative to I, say 4, and so
X (f(A)) is true in A. To eliminate this ambiguity, STAINARER and THOMASON
introduce an abstraction operator into the language, which we shall write using 4
notation. Then, the convention followed is, (AxX) (f) is true in the possible world I”
provided X (f(I")) is true in I'. The above ambiguous case now breaks into two
distinct formulas, (A2 X) (f) and O(AxX) (f). For a fuller discussion of this point
see their papers [7, 8]. Of course some convention must be adopted concerning
atomic formulas, but this need not be gone into here.

We shall be interested in these new name-c¢onstants and not in the more usual
thing-constants. What we want is a formulation of first-order S4 which does not
mention thing-constants. If we require that our models have ‘“‘enough” name-
constants this can be done. When we say “enough’ we have two conditions in
mind. The first is, simply, that each thing have a name, that is, in each possible
world and for each thing-constant of that world, some name-constant names that
thing. The second condition is more complex and is directly related to the proof
of the Fundamental Theorem which we will give. It is a requirement that there be
certain ‘‘choice” names. Let I" be a possible world and X (x) a formula with only
the variable x free. We require that if -X () is true of some thing in I" and also of
some thing in each world possible relative to I, then there is a name which, in each
world possible relative to /', names a thing of which X (x) is true. An equivalent
way of stating this is: if [1(3z) X is true in I, then there is some name-constant,
say f, such that [](AzX) (f) is true in I'. f behaves like a ‘choice’ name, choosing
in each world something making X (x) true. It is essentially an epsilon-term in
HiLBERT’s sense. See [2] for a general treatment of S4 epsilon-terms.

Our first condition above allows us to state something akin to the usual rule of
necessitation. Suppose, for example, that the only free variable of X is x, and sup-

%ty
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pose (Az [1X) (f) is not valid. Then there is a possible world, I, in a KRIPKE model,
in which this formula is not true. Let us say f names the thing ¢ in the world I
Then we have that []X (c) is not true in I". There must then be a world, say 4, pos-
sible relative to I', in which X(c) is not true. If we assume our model meets the
first condition above, the thing ¢ has a name in 4, say g. Then (AzX) (g) is not
true in A. Now, if % is a name not occurring in X, (AzX) (k) is not valid, for we can
arrange matters so that £ and g act alike in 4, and (AzX) (g) is not true there.
Turning this argument around we have: if (A2X) (k) is valid, where h does not
occur in X, then (Az [1X) (f) is also valid. This will be the basis for our rule of
necessitation below.

The reader may verify that the second condition above allows us to conclude:
if O(AzX) (f) o Y is valid, where f does not occur in X or ¥, then [(J(Fz) X o ¥
is valid. This will be the basis for rule AR4 below.

The other rules and axioms we will assume are much more straightforward. For
instance, if = is the only free variable of X and Y, and f is a name-constant, we

" would want

[Az(X A Y)](f) = [(AzX) (f) A (A2 Y) (f)]
to be true. We will take a more general version of this as an axiom.

Now we have finished with our model theoretic motivation. We give, formally,
the system AS4. The primitive symbols are those of ordinary first order S4 with
the addition of A. To be definite, we take A, ~, 3, [] and A as primitive and define
the other connectives, quantifier and modal operator as usual. We use z, y, 2, ete.
for variables and f, g, &, ete. for (name) constants. The definition of formula is as
usual, with the added clauses: 1) an atomic formula is an expression of the form
P(x,,...,z,) where P is an n-place predicate letter and z;, ..., z, are variables;
2) if X is a formula, x is a variable and f is a constant, then (AzX) (f) is a formula.
We take z to be bound in (AzX) (f). "

We often use the notation X (z/f) to denote the result of substituting f for free
occurrences of # in X. To simplify notation we use (Az;...%,X) (f1,...,[s) a8
an abbreviation for (Az;(Ax, ... (A2, X) (f,) - ..) (f2)) (f1). Further, we often use
and f to denote sequences of variables and constants respectively, depending on
context. Thus we may abbreviate (Az; ..., X) (f1, ..., [f.) simply as (AzX) (f).

If a formula has no occurrences of any free variables we will call it a closed for-
mula. All our theorems are closed formulag. If (A X) (f) has no free variables we
call it a A-closure of the formula X. If X itself is closed we also consider it to be a
A-closure of itself.

The rules and axioms of AS4 are as follows.

Rules.
AR1: 1If X and Y are closed formulas then
XXoY
—y

1*



4 ‘MELVIN FITTING

AR2: If f is a sequence of distinct constants, none of which occurs in X, ¢ is a
sequence of constants of the same length, and (A® X) (f) is a closed formula,
then '

(A= X) (f)
(e 0X)(9)
AR3: If (dx) X and Y are closed formulas and f does not occur in X or Y, then
AzX)(f) o Y
@) XoY
AR4: If (3z) X and Y are closed formulas and f does not occur in X or Y, then
O@zX)(H>Y
O3z X Y °

Axiom schemas.
AA1l: If yis not free in X, but y is free for z in X, (AzX) (f) = [AyX (/)] ().
AA2: If z is not free in X, (AzX) (f) = X.
AA3: If x + y and y is free for z in X, (AyxX) (f, /) = [AyX (z[9)] {f)-
AAL: I @y * 7y, A212X) (F1s fo) = (Azey X) (fo, fo) -«
AA5: [Ax(X A X)1(f) = [(Ax X) (f) A (A2 Y) ()]
AAG: (Ax ~X) (f) = ~(AxX) (f).
AA7: Tf y is not in the sequence ®, [Ax(3y) X](f) = Fy) [(A=X)] (f).
AA8: X, if X is a classical tautology.
AA9: O - Y)>o (OX o OY).
AA10: OX > X. -
AALl: OX o OQOX.
AA12: (AzX) (f) > () X.
This completes the presentation of the system AS4.

§ 3. Statement of Results

Now that the system AS4 has been presented we can state precisely the principal
results which will be established in the remaining sections of this paper. Since we
want to establish a relationship between 1S4 and a more conventional first-order

S4, for definiteness sake we begin with a formulation of such a system, which we
call FS4.

The language of FS4 differs from that of AS4 in not having A as one of its prim-

itive symbols, in not having f, g, %, etc. as symbols for name-constants, but in °

having a, b, ¢, ete. as symbols for thing-constants. The axioms and rules are as
follows, where X and Y stand for any closed formulas.
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Rules.
FRI: XX>oY ‘ ' U ’
. : 7 . S
X
FR2: -D—X'.
FR3: If ¢ does not occur in Y, then

XoY
Qz) X(c/x) 2 ¥ °

Axiom schemas.
FAl: X, if X is a classical tautology.
FA2: X = Y)> (OX > 0OY).
FA3: OX o X.
FA4: OX - QOx.
FA5: X 5 (Jx) X(c/z).
Then the first important result of this paper is

Theorem 1. If X is a closed formula with no constanits (of either kind) X is a the-
orem of AS4 if and only if X is a theorem of FS4.

We will establish this constructively by showing how to translate proofs from
each system to the other. The statement of the next theorem, the analog of
SMuLLYAN’s Fundamental Theorem, requires several preliminary definitions.

By a regular formula we mean a closed formula of AS4 of one of the following
three types:

1) (AzX)(f) = 37) X,
(2) a A-closure of (z) OX > O (3x) X,
(3) (3x) X o (AzX) (f) where f does not occur in X.

In the type (3) formula above, we call f chosen by the formula. By a regular sequence
for Y (a closed 1S4 formula) we mean a finite sequence, R,, Ry, ..., R,, of regular
formulas, such that if R; is of type (3) the constant chosen by R; does not oceur
in R; for any j > i, or in Y. By a regular set for Y we mean a finite set R which
can be arranged in a regular sequence for ¥, We use R° to denote any conjunction
of all the elements of R. Finally, by the proposztwml part of AS4 we mean AS4
without axiom AA12 and rules AR3 and AR4. Then the analog of the classical
Fundamental Theorem may be stated as follows.

Theorem 2. Let X be a closed formula of 2S4. X is a theorem of AS4 if and only
of there is a regular set for X, call it R, such that (1R¢ > X is a theorem of the. pro-

positional part of 1S4.
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We have defined the propositional part of AS4 as we did because it is a logic
with an intuitively appealing model theory, though we make no use of it in this
paper. In fact, a more restricted logic will do, as our proof will show. If we call
the strict propositional part of AS4 the propositional part of AS4 with rule AR2
replaced by the simpler

X
AR2%: ﬁ if X is a closed formula

‘then we will actually show ‘
Theorem 2*. If X is a closed formula of 1S4, X is a theorem of AS4 if and only

if there is a regular set for X, call it R, such that (QR¢ > X is a theorem of the strict
propositional part of AS4.

Our proof of this is entirely constructive. Since one can effectively generate the
infinite sequence of sets regular for X, we have the form of the theorem referred
to in the introduction. The decidability of either the propositional part of 184 or
of the strict propositional part is an interesting open question.

§ 4. Development of 184

In this section we outline how 1S4 may be developed. We give a condensed
sample proof in the system (of the converse of the BarcaN formula). Then we
sketch proofs of certain metatheorems, and finally show half of our theorem 1. We
note without proof that analogs of axioms AA5, 1A6, AA7, AA12 and rules AR3
and AR4 hold for the other connectives and quantifiers.

Theorem. If X has only x free, (3z) OX o-O(Ax) X is a theorem.

Proof. Choose a constant, f, not in X. By 1A13, (1zX) (f) o (3z) X. By A1A2,
(AzX) (f) > (Az(@z) X) (f), so (Az[X > (3z) X)) (f). Then by AR2, (Az[O[X >
> (3z) X]) (9) and we may choose g so that it does not occur in X. Adapting stand-
ard arguments we may conclude .

(Az[O0X = ©(F2) X)) (9), (Az OX)(g9) = (Az O(3x) X) (9).
By AA2 again, (Az OX)(g9) © O(F=) X. Finally, by AR3, (z) OX o O(32) X.

We leave it to the reader as a good exercise to show the following generalization.

Theorem. Any A-closure of (Az) OX o O(Ix) X is provable.

All the axiom schemas of 154 are of the form: all A-closures of X are provable.
Let us introduce the notation FX to symbolize this, i.e. that all A-closures of X
are provable in AS4.

FX FXoY
FY )

Proof. Suppoée FX and FX o Y. Let (Ay Y) (g) be a A-closure‘of ¥ we wish
to show is provable. Let & be a sequence consisting of all the free variables of

Theorem.

e~ ®F oA
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X other than those already in y, and let f be a sequence of constants of the
same length as ®. FX so (AxyX)(f,g) is a theorem. FX o ¥, so similarly,
(Axy(X o Y)) (f, g) is a theorem. But then,

| (Axy X) (f,9) = (Axy Y) (£, g)

is a theorem, so by AR1, (AxyY) (f, g) is a theorem. Since the variables in @ are
not free in ¥, use of AA2 produces (Ay Y) (g).

FX
rOx”
Proof. By use of AR2.
Theorem. Suppose x is not free in Y, then
FEX > Y
+Ex) XS ¥

Theorem.

Proof. Suppose F X > Y. Let (Ay[(3z) X > Y]) (f) be a A-closure of Fx) X > Y
we wish to prove. Without loss of generality we may suppose « is not in the sequence ¥
(z is not free in (32) X > ¥ and we have AA2). Let g be a constant not in i
or in X or Y. Since X o ¥, (Az(y(X > Y))(f)) (g) is a theorem, hence so is
(Az(Ay X) (1)) (9) = (Az(Ay Y) (f)) (9). Using 2A2, (Az(AyX) (f)) (9) > (Ay Y) ().
Now by iR3, (32) (AyX) (f) = (A Y) (f). By 2A7, (Ay(=2) X) (f) > Ay Y) (f)-
So, finally, (Ay[(3z) X o> Y)) (f).

Theorem. If y is not in X, FX(z/y) > (Jz) X.

Proof. Using 1A12 and AA1.

One may show a variant of the replacement theorem, as usual, by an induction
on degree.

Theorem. Let A, B, X and Y be formulas. Let Y be the result of replacing, in X,
the formula A at some or all of its occurrences by B. Then
t4A =B
FX=Y"°
This form is most convenient for AS4 as presented; it is closely connected with
more conventional formulations, as the following shows.
Theorem. FX if and only if the universal closure of X is a theorem.
Finally, using the above we show

Theorem. If X is a closed formula with no constant symbols which is a theorem
of ¥84, then X is a theorem of AS4.

Proof. Let X, X,,...,X, = X be a proof of the constant-free formula X in
FS4. Let ¢y, ¢, ..., ¢ be all the thing-constants occurring in the proof, and let

@1, Xy, . .., & be k distinct variables not occurring in any formula of the proof.
Let X}¥ = X;(c/x). We claim FX¥* for i =1,2,...,n.
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But this is easy to see, for if X; is one of the axioms FAl, FA2, FA3 or FA4,
FX¥* by AAS8, AA9, AA10 or AA11 respectively. If X; is an FA5 axiom, F X} using
one of the above theorems. Finally, if X; comes from earlier lines of the proof using
FR1, FR2 or FR3, X¥, again, using the above theorems. Thus FX%. Since X,
has no constants, X% = X, = X and we are done.

Remark. The above does not make use of AR4.

§ 5. The Relation of 1S4 and FS4

We devote this section to a proof of the converse of the last theorem of §4,
namely

Theorem. If X is a closed formula with no constant symbols which is a theorem
of AS4, then X is a theorem of FS4.

We will rely chiefly on two lemmas which we give before discussing the rather
complicated proof translating procedure

Lemma 1. Let A (x) be a formula of ¥S4. Then the universal closure of the follow-
ing s an FS4 theorem:

(Vo) {{Qz) A(z) > A(x)] o A(z)} = (Fx) 4 ().

Lemma 2. Let A(x) and B be formulas of FS4 with x not free in B. Then the uni-
versal closure of the following is an FS4 theorem;

(Vo) {{3x) 4 () o A(x)] o B} = B.

Now we begin discussing the translation process. Rule AR4 allows us to pass
from [J(AzX) (f) > Y to [1(3«) X o Y provided f does not occur in X or Y. Let
us call these name-constants, like f here, which are thus used in AR4 applications
special (with respect to a given proof) and the other name-constants ordinary.

Suppose X;, X;, ..., X, is a AS4 proof and that we have used AR4 to conclude
X;=Q@F2) X > Y from X;=[(A2zX)(f)> Y (j > 7). Let g be some name-
constant not occurring in the proof and consider the following sequence:

-Xl, X2: ] Xi’ -Xl(f/g)’ X2(ﬂg)a e Xi(f/g)’ -Xi+1’ ey Xn'

This is still a 1S4 proof of X,,, but we may now infer X; from X;(f/g) instead of X;.
The gain is this: the special constant, g, involved in this new AR4 application does
not occur in the proof anywhere after the hypothesis of this AR4 application (while
f might). By repeated uses of this sort’ of trick we may produce a proof in' 184 of
X,, having the following properties:

1) No special constant occurs in the proof after the hypothesis of the AR4 rule
application in which it is involved (and hence different applications of AR4 in-
volve different special constants).

2) If rule AR2 is used to conclude (Ax [(1X) (g) from (AxX) (f), none of f are
special, and none of f occur in the proof after (AxX) (f).

3) If rule AR3 is used to conclude (3z) X o Y from (AzX)(f) o Y, f is not
special, and f does not occur in the proof after (AzX) (f) o Y.

4

A3
—_

e AR
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Let us call a AS4 proof satisfying these three conditions a normal proof. We
have, then, if X has a 484 proof, X has a normal proof. We show how to translate
a normal proof from A84 into a proof in FS4. The translation depends on the
number of applications of AR4 which are involved. To make the notation simpler,
let us work with a proof in which there are three such applications, though the
method will be seen to be general. Furthermore we may suppose the conclusion
of each AR4 application immediately follows the hypothesis, to further simplify
notation. Thus, let us suppose X is a formula with no constants, and the following
is a normal proof of X, wherein all AR4 applications are indicated.

1) X,
2) X,

ng) Xn, = OAzP;) (fs) > Ys
ng + 1) Xy pqy = 0@2) P32 Y,

p) X,, = 0O@xPy)(f2) @ Y2
no + 1) Xnper = O@2) Py 2 T,

m) X, =0O0«P) () > Yy
n + 1) X};l+1 =[0@z) P> Y,

.
. .
. .

n) X, =X.

By the conditions of AR4, f; does not occur in P; or Yj. Moreover, since the
proof is normal, f3 does not occur after the ngth step. Similarly, f, does not occur in
P,, Y,, or after the nyth step, and f, does not occur in Py, Y,, or after the n,th step.

The special constants of this proof are fi, fe and f,. Let g1, 92, .- -, gx be the
ordinary constants. Let z;, ; and x5 be three variables not used in the proof, and

C1, Ca, « - -, Cx be k different FS4 thing-constants.

Suppose [1W is a subformula of X;. We say f: is attached to QW if W has a sub-
formula of the form (Az Z) (f;) which is not a subformula of (R, a subformula
of W. That is, if by taking a subformula of a subformula of ete. of W we can reach
a formula of the form (iz Z) (f;) without first reaching one of the form [JE.

Now we are ready to define our translation, or more precisely, a sequence of four

translations.

First, let us define 7, (Z) to be the result of replacing each subformula of Z of
the form (AxzW) (¢;) (g9; ordinary) by W (x/c;). Let us note-that since X = X, has
no constants, Ty(X) = X. Moreover, if Z has no special constants, T'9(Z) is a for-
mula of FS4. Thus T,(X;) is an FS4 formula provided ¢ > 7;.
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Next, let 8, be the formula 7'y ((32,) Py (/2,) o Py (2/xy)) that is, (3a;) T, (P1) (x[21) ©
D Ty (P1) (x/21). Let us define a translation 7', as follows. Let Z be some 1S4 for-
mula. First, form Ty(Z). In the resulting formula replace each subformula of the
form JW which has f, attached by [1(Vz,) (S; o W). Finally, in the resulting
formula, replace each subformula of the form (Az Q) (f1) by Q(=/x,). Call the result
T.(Z).

We note that if Z has no occurrences of f, or f; then 7T, (Z) is a formula of FS4.
Thus T (X;) is an FS4 formula provided i > n,. Further, 7', (X;) = Ty(X;) provided
> n. ~

Next, let S, be the formula 7', ((3x,) Py (/xs) o Py (x/x3)) that is, (32) Ty (Py) (z[23) o
2 T'1(Py) (x/x3). We define our next translation, 7T, as follows. Let Z be some
484 formula. First, form T;(Z). In the resulting formula, replace each subformula
of the form [JW which has f, attached by [] (Yay) (V) [(8y A Sz) o W]. Finally,
in the resulting formula, replace each subformula of the form (Az Q) (f2) by @ (z/x,).
Call the result 7,(Z).

As above, T,(X;) is an FS4 formula provided ¢ > ny, and T,(X;) = Ty(X))
provided 7 > n,.

Again, let S; be the formula T,((3z;) Ps (w/x3) > Py(zfxs)) that is,
(3zs) T (Ps) (x/23) > Ty (P3) (z/x3). We define our last translation, 7', following
the above pattern. Let Z be a 1S4 formula. First, form T, (Z). In the resulting
formula, replace each subformula of the form [W which has f» attached by
D (Vay) (Vap) (V) [(81 A Sz A S3) © W]. Finally, in the resulting formula replace
each subformula of the form (iz Q) (f;) by Q(x/x;). Call the result T3(Z).

Now, T43(X;) is an FS4 formula for each i, and T3(X,) = Ty(X,) if ¢ > ny.
We assert the following is a sequence of FS4 theorems:

1) (V1) (Vaa) (Vag) [(S1 A 82 A 85) > T5(X))]
2) (V1) (Vo) (Vzg) [(81 A Sz A 83) > Ts(Xs)]

ng) (V1) (Vo) (V) [(S1 A Sz A S5) o T (Xn,)]
ng + 1) (Vo) (Vo) [(81 A 8p) © To(Xpn 44)]

Y] (V) (Vo) [(81 A 8p) o T2(X,,)]
ng + 1) (V&) [81 o T1(Xpp)]

71) (V-"_Ul) [S: = Tl(Xn,)]
ny + 1) To(Xn1+1)

%) Tl) (Xn)-
Then, since Ty (X,,) = T (X) = X, we will have finished a proof of theorem 1.
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It is a simple but useful observation that we may replace
(V) (Va) (Vag) [(81 4 B2 A Sg) > W]

by (V&) (Va3) [(S1 A S3) > W] wherever it occurs in a formula, provided x3 is not
free in W. This may be easily shown.

(Vary) (Vap) (Vs) [(S1A 8z A S) > W]
is equivalent to
(V) (Va) (Vg) {85 2 [(S1A S2) > W]

But, S; is (3xs) T2 (Ps) (x/x5) © T (Ps) (x/23) and by construction, z3 is not free
in 8;,8; or W. So by lemma 2, the above formula is equivalent to

(Va;) (V) [(S1 A 8z) > W].

There are similar useful replacements for the case that x; and z; are not free,
and x5, z; and z,. One immediate consequence of this is that the proof translation
as given above is equivalent to: replace each X; by .

(V) (Vaa) (Vag) [(S1 A Sz A Sg) o Ty (X1
For instance, consider 7, = ¢ = n;. Theh '

(V) (V) (Varg) [(S1 A 82 A S5) © T (X3)]
is equivalent to
(Va;) (V) [(S1A 8;) o T5(X,)]

since z is not free in T3(X;) by construction, and for ¢ > ng, T3(X;) = Te(X)).
If we call the formula (Vz,) (V&) (V&3) [(S1 A Sz A S3) o T5(Z)] the Ts-translation
of Z (and similarly for T, and T') we have shown that, for each ¢, the translation
of X; as given above is equivalent to the T’ translation of X;. We will make much
use of these remarks below. -

Now we show the translation of each X; is indeed a theorem of FS4.

If X, is one of the axioms AA1—21A8 or 2A12 it is not difficult to see its translate
is a theorem of FS4. Suppose X is an instance of AA9, let us show the T} translate
of X; is an FS4 theorem. To simplify notation we use S for 8; A S; A 83, and (V)
for (Vi;) (V) (V3). Suppose X; is some A-closure of [(J(Z > W) o (Oz > Ow).
The universal closure of :

(V) [8 > (T5(Z) = Ts(W))] = [O(Va) (8 = T3(Z)) > O(V) (8 2 To(W))]

is an FS4 theorem, and from this the T'; translate of X; follows, using the above
remarks. Suppose X; is an instance of 1A 10, say a A-closure of [1Z > Z. The fol-
lowing is an FS4 theorem:

(V) {8 o [O (V) (8 ='T5(2)) > T3(2)]}

and again using the above remarks the 7T'; translate of X; follows. Finally, if X.
is an instance of axiom AA1l, its translate is easily seen to be a theorem of FiS4.
Thus the translations of each AS4 axiom used in the proof are theorems of FS4.

Next, suppose X; follows by AR1 from X; and X; o X;, both occurring earlier
in the proof than X;, and suppose the T'; translates of both are theorems of FS4.
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Thus we have in FS4

(Vo) [S = Ts(X))], (V&) [S = (T5(X;) o Ta(X)].
From this we easily deduce in FS4 (V) [S o T5(X;)] which is the 7, translate
of Xi‘ .

Suppose X; has been deduced from X;, occurring earlier in the proof than X;,
using AR3, and suppose the translate of X; is a theorem of FS4. To be definite,
let us suppose

Xi=(AxZ)(g,) > Y, X;,=@F@x)Z>Y

and n, = § > ng. The T, translate of X; is an FS4 theorem. This is (recall, since
the proof is normal, g, is ordinary) (V) {8 > [T(2) (zfcg) o Ta(Y)])} where we
use S now for 8; A 8, and (V) for (V) (V,). Equivalently, we have

(V) {T2(2) (x[c,) = [S o T(X)]}. *)
Since the proof is normal, g, does not occur in the proof after the §* line, hence 94
can not occur in P, or P;. It follows that ¢, does not occur in 8; or 8, and hence
not in 8. Furthermore, by the AR3 conditions, g, does not occur in Z or ¥. Thus
the only occurrence of ¢, in (*) is the one indicated. It follows then that

(Va) [(F2) T2(Z) > (8 o To(Y))], (V&) [S o ((F=) T2(2) > To(Y))],
(V) [S o Ty ((3x) Z o Y)]

and this is the 7', translate of X;.

We leave applications of AR2 to the reader. They have features in common
with the above. :

Finally, suppose X; has been deduced from an earlier formula by an application
of AR4. To be specific, let us suppose the translate of X,, is a theorem of FS4
and let us show the translate of X,, ,, is also a theorem. Thus we suppose the fol-
lowing is provable in FS4: .

(Varr) (Vare) [(S1 A Sp) © T (Xn,)]-
Now, Ty (X,,,) is OO (V1) (V) [(S1 A Sg) D Ta(Ps) (w/2s)] © T(Ys) or equivalently,
O(Va) (Vag) [S1 2 (82 © T2 (Pe) (x/x2))] © T2(Y:). Now, by the AR4 conditions,
f2 is not in P, or in Y, (and neither is f; since the proof is normal). Hence
Ty (Py) = T1(Py), Ty(Ys) = T1(Yy).
So the above is [J(V;) (Vay) [S; o (S; o T1(Py) (x[23))] > T1(Y). Next, z, is
not free in §,, since f; is not in P,. Thus the above is equivalent to
O (V21) {81 2 (V&) [Se 2 T1(Pe) (2/22)]} = T1(Y).
Moreover, (V) [Se o T (Ps) (z/x,)] is, written out,
(Vae) {[(F2) T1(Py) (w/22) o T1(Pe) (2[2)] > T1(Py) (x/25)}
and by lemma 1, we may replace this with (3z,) 7', (P,) (#/x,). Thus Ty(X,,) is

equivalent to
O(V21) {81 o 3a) T1(Pe) (/2)} o T1(Y).
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This is equivalent to T5((](32) Py o Y;) or T1(Xp 41). Thus, if the T, translate
of X, is provable, so is the T translate of X, ;1. The other two AR4 applications
are treated similarly.

It follows now that the translate of each X; is provable in FS4, hence so is that
of X, that is, X itself is provable, and we are done.

§ 6. The System IS4

In this section we present an S4 type system much like the system £S4 of [2].
It is an epsilon-calculus formulation of S4 except that there are epsilon terms
only for formulas with at most one free variable. Proving that IS4 is a conservative
extension of AS4 will be seen to be equivalent to proving the Fundamental Theorem
for A54.

The language of IS4 is an extension of that of 1S4, in which we associate new
constants with formulas having single free variables. We do this in the following
way. Let Cy be the collection of name-constants of 1S4 and let Fy be the set of
all 1S4 formulas. To each formula, X € F, having at most one free variable as-
sociate a distinet new constant, ex. Let C; be C, together with all these new con-
stants, and let F, be the set of all formulas with constants from C;. Similarly as-
sociate distinet new constants with those formulas of ¥; — F, having at most one
free variable, let C, be C,; together with these new constants, and let F, ‘be the
set of formulas with constants from C,. And so on. Let F = UF, and C = UC,.

The set of formulas of IS4 is F. Thus, in IS4, to each formula X with at most one
free variable there is associated a unique constant, ex.

The rules of IS4 are AR1 and

AR2*%: if X is closed,
X

ox-
The axioms of IS4 are those of AS4 (with the domain of constants enlarged from
C, to C), together with the following:
TA13: all A-closures of (Iz) ©X o O(d2) X.
IAl4: If (Jx) X is closed, () X o (AzX) (ex).

This completes the presentation of IS4.-Now we show that it is an extension
of A84. First we note

Lemma 1. Let X be a closed formula of 184, let f € Cy and g € C. If X is a theorem
of IS4, so i X (flg).

Proof. If X,,X,,...,X, = X is a proof in IS4 of X, X,(flg), Xz(flg), ...,
X, (flg) is a proof of X(f/g). :

Now, all the axioms and one of the rules of 1S4 are directly in the system IS4.
If we show rules AR2, AR3 and AR4 are derivable in IS4 we are done.
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Lemma 2. Suppose (AxX) (f) s a closed formula of 1S4, all of f are in C,, dis-

tinct, and none of f occurs in X. Then if (AxX) (f) 48 a theorem of IS4, so is-

(Ax OX) (g) where g is any sequence from C.

Proof. Suppose (AxX) (f) is provable. By repeated use of lemma 1, (AxX) (¢)
is also provable, where £ is a suitable sequence of IS4 epsilon terms which will
enable us, by repeated use of IA14, to conclude (V&) X. Then by AR2*, (] (V) X.
Next, by repeated applications of TA13, we may get (Va) [1X. Lastly, by 1A12
repeatedly, (Ax [1X) (g).

Lemma 3. Let (AxX) (f) > Y be a closed formula of IS4, where f € Cy but f does
not occur in X or Y. If this is a theorem of 1S4, so is (Ax) X o Y.

Proof. (AzX)(f)> Y is a theorem of IS4 and f€ (,, so by lemma 1,
(AxX) (ex) o Y is provable in IS4. Then by IA14, (3x) X o Y is a theorem.

Rule AR4 is treated similarly. Thus we indeed have
Theorem. IS4 is an extension of AS4.

We note for later use that we may show a deduction theorem for IS4 as follows.
Call Y deducible from X, ..., X, provided that if X;,..., X, are added to IS4
as axioms, Y is provable.

Theorem. Suppose Y is deducible from X, ..., X, in IS4.Then Y X A+ A X,)2 Y
18 a theorem of 1S4. (Equivalently, (X A-+-A[1X,) o Y.)

The proof is as usual, by induction on the length of the IS4 deduction. The []
symbol before the X; A -+ A X, arises from the presence of AR2*. A1A1l is also
needed here.

§ 7. The Fundamental Theorem

In the last section we showed IS4 was an extension of AS4. The primary result
of this section is a proof that the extension is conservative. From it follows the
main part of the Fundamental Theorem. First, however, we establish directly the
easier part.

Lemma 1. Let X be a formula of 2S84 with at most « free. Then [1(Az) [(Az) X > X)
s a theorem of AS4. '

Proof. Let f be a constant not in X,
(22 X) () = [(3=) X > (e X) ()]
> [(Az(32) X) (f) = (A2 X) ()]
> (22[@2) X > X)) ()
o (3z) [F=x) X o X].
Then, using AR3, (z) X > (Iz) [(3z) X > X]. But also,
~(@2) X 5 [32) X > (A X) (f)]

-
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80 again
~(@2) X o (Az[(32) X o X]) (f)
> (Jz) [(3=x) X o X].

Thus we have (3z) [(Ix) X > X] and now, by AR2 we are done.

Lemma 2. Suppose [1[(3z) X o (AzX) (f)] o Y is a theorem of AS4, where §
does not occur in X or Y. Then Y is a theorem of 1S4.

Proof. OJ[(3x) X o (AzX) (f)] o Y so O(Az[(3z) X > X])(f) © Y. Then by
AR4, (J(32)[(32) X > X] > Y. Now, by lemma 1 we are finished.

Remark. This is the only place in the proof of the Fundamental Theorem that
AR4 is needed.

Theorem. Let R be regular for Y and suppose (1R o Y is a 1S4 theorem. Then
80 18 Y.

Proof. Let B = {B;, Ry, ..., R,}. Then [JR° > Y is equivalent to
OR,>(OR;>(...(OR. > Y)...)).

We may suppose the sequence R;, R,, ..., R, is a regular sequence for Y. Now
the result follows by lemma 2, axiom AA12 and a result of § 4.

If a constant, f, of IS4 is in C,, but not in any C} for k < n, we say f is of rank n.

Theorem. Let X be a formula of 284, i.e. X € Fy, and suppose X is a theorem
of 184. Then there is a regular set R for X such that [1R° > X can be proved in the
strict propositional part of AS4.

Proof. X is provable in IS4. Let R be the set consisting of all instances of ax-
ioms AA12, TA13 and IA14 used in the proof. Then X is deducible from R in IS4
without any other use of 1A12, JA13 or IA14. The deduction theorem for IS4
(and its proof) then gives us: [JR¢ > X is provable in IS4 without use of 1A12,
TA13 or TA14. Let 4 = {4,, 4,,..., A,} be the set of IA14 axioms in R and
let B = {B;,B;,...,B} be R — A. Let & be the constant chosen by 4,, & by
As, ..., &, by A,. Let us suppose the sequence 44, 4,, ..., 4, is arranged so that
rank (¢;) = rank (¢;,,). Let &,,1, ..., & be the other constants of R of rank > 0.
Let f1,f2, .+« fns far1s .., fp be constants of rank O which do not occur in R
or X. For any formula Z, let Z* = Z(eff). Let R* = {A¥, ..., A% B¥, ..., B¥.
Then [ORc > XJ* = (QR*c 5 X* = [JR*<> X since X € F,. Moreover, clearly
[OR*c > X is also provable in IS4 without use of 1A12, IA13 or TA14. Then since
OR*¢ > X € F, we have that, [JR*c > X is a theorem of the strict propositional
part of AS4. It remains to show that R* is.a regular set for X.

Arrange R* in the ordering BY, ..., B¥, A¥, ..., A%X. We show this is a regular
sequence for X. Certainly each B} is a regular formula. Moreover, A¥ is of the
form (Jx) W* o (AzW*) (f;) and we claim f; does not occur in W*. Suppose it
did. 4; is of the form (x) W o (AxW) (¢;) so &; [= ew] would occur in W. But
the rank of ey must be greater than the rank of any constant of W, so ey is not
in W. Thus each A} is regular.
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Next, suppose A¥ is (3z) Z* > (Ax Z*) (f;) where j > ¢. We show f; does not
oceur in A¥. Otherwise, ¢; would occur in 4; = (3z) Z o (Az Z) (¢;), where ¢; = &w
and g = &z. But, as above, the rank of ¢z is greater than the rank of any constant
of Z, and by arrangement, rank(s;) = rank(g;), so &; can not oceur in Z. Moreover,
if & = &, ew = &z and we would have W = Z, so 4; = 4; and E would have
a redundant formula which we may drop. Thus ¢; is not in 4;, so f; is not in 4.

Finally, f; does not occur in X* since otherwise &; would oceur in X, but X € F.
Thus R* is regular for X. ‘
Corollary 1. IS4 s a conservative exiension of AS4.

Corollary 2. If X 4s provable in AS4 then there is a regular set R for X such that
[OR® > X can be proved in the propositional (strict propositional) part of 1S84.

References

[1] FrrTing, M., An embedding of classical logic in S4. J. Symb. Log. 86 (1970), 529—534.

[2] Frrrive, M., A modal logic epsilon-calculus. To be published in Notre Dame J. Form. Log.

[3] HERBRAND, J., Investigations in proof theory. On the consistency of arithmetic. In: From
Frege to Gédel (ed. J. van Heijenoort), Harvard University Press, Cambridge, Mass., 1967,
524—581 and 618—628.

[4] KrIPKE, S., Semantical considerations on modal logic. Proceedings of a colloquium on modal
and many-valued logics. Helsinki, Aug. 1962. Acta philosophica Fennica 16 (1963), 83—94.

{5] KrrpKE, 8., Semantical analysis of modal logic I. This Zeitschrift 9 (1963), 67—96.

[6] SmurLyAN, R., First-Order Logic. Springer-Verlag, Berlin 1968.

[7] STALNAKER, R., and R. THOMASON, Abstraction in first-order modal logic. Theoria 34 (1968),
203—207.

[8] THOMASON, R., and R. STALNARER, Modality and reference. Nous 2 (1968), 359—372.

(Eingegangen am 19. Oki;ober 1971)



