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Abstract

We state and prove amodal Herbrand theorem that is, we believe, amore natural analog of the classi-
cal version than has appeared before. The statement itself requiresthe enlargement of the usual machinery
of first-order modal logic — we use the device of predicate abstraction, something that has been consid-
ered elsewhere as well. This expands the expressive power of modal logic in a natural way. Our proof
of the modal version of Herbrand's theorem uses a tableau system that takes predicate abstraction into
account. It is somewhat simpler than other systems for the same purpose that have previously appeared.

1 Introduction

In classical logic, Herbrand's famous theorem of 1930 plays many roles. Herbrand seems to have thought
of it as something like a constructive completeness theorem [12, 13]. Robinson cited it as the foundation of
automated theorem proving [15]. It has been applied to derive results on decidability [3]. But despiteitsfun-
damental nature, it has remained remarkably classical. Completeness results, with suitable generalizations
of Tarskian semantics, have been extended to arich variety of non-classical logics. The sameistrue of in-
terpolation and compactness theorems, cut-free sequent calculi, ultraproduct constructions, and many other
tools originally developed for classical logic. Such generalizations not only provide us with machinery for
working with non-classical logics, they aso help us understand the tools themselves in a deeper way. But
Herbrand' stheorem, by and large, has aways remained confined to itsoriginal setting. To be sure, there have
been attempts at broadening it [5, 14, 1], but these have been not entirely satisfactory for avariety of reasons.
While it was constructivein nature, [5] was not really amodal analog of Herbrand’s theorem, but rather of a
related result of Smullyan, in which expansions have quite adifferent form. On the other hand, [1] wasatrue
generalization of Herbrand’s theorem to the modal setting, but rather than an expansion being aformula, itis,
in effect, aset of formulas, and the notion has more the nature of a process than a static entity. The treatment
of [14] is, in many ways, closest to ours, making use of tableaus and expanding the machinery of first-order
modal logic, but our approach is almost orthogonal to that one. Where [14] modifies the structure of terms
using a“bullet” operator, we modify the structure of formulas using predicate abstraction which wefeel isa
more natural modification.

In this paper we present what we think is a close modal version of Herbrand's theorem. We give it for
the modal logic K without the Barcan formula. In order to do this the basic machinery of modal logic must
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be enriched — in ways that are natural and useful for other purposes. Non-rigid designators are essential,
and with these comes what we call predicate abstraction, something that has no role in classical logic, for
reasonswewill seebelow. Thisprovidesaconservative extension of first-order modal logic asitisordinarily
formulated, and gives us what we need to state and prove a Herbrand theorem that is a natural analog of
the classical one, and which reduces to a classical version if no modal operators are present. The notion of
predicate abstraction is an intrinsically interesting one, enriching the expressive power of first-order modal
logic in useful ways. It has been explored in other publications and has alengthy, if spotty, history.

2 What Isthe Problem?

Often, classical Herbrand expansion is applied to formulas in prenex form, but such a normal form is not
available in modal logic. No matter. Asoriginally presented, and as formulated in [2], the Herbrand expan-
sion process applies to arbitrary formulas, so thisis no modal obstacle.

Classically Skolemizationisinvolved, and here our troublesbegin. Actually, therearetwo broad versions
of Skolemization, depending on whether existential or universal quantifiers are removed. The first version
preserves satisfiability, the second preservesvalidity. It isthe second that will be of importance here. Inthis,
for instance, the validity functional form of (vVx)Px, where Px is atomic, is Pc, where ¢ is a new constant
symbol. But now, in the modal setting, what should be the validity functional form of {(Vvx)Px, and what
should be the validity functional form of (vx){ P x? Both would seemto be { Pc, but it is not reasonable to
have both formulas, with quite different meanings, Skolemize to the same thing.

Carrying the discussion alittle further, when the validity functional form of (¥x) P x is created, the intu-
itionisthat if (vx)Px failsin amodel, ¢ should designate something in the domain of the model for which
Pxisnot true— thusif Pcisvalidit followsthat (Vx) Px must also bevalid. Carrying thisintuition over to
the modal setting, consider ¢ (vx) P x, which we tentatively Skolemize by ¢ Pc. If {(vx)Pxisnot K-valid,
there must be a K-model, and aworld p of it, at which {(vx) P x fails. But then, in every world accessible
from p, (¥X)Px must also fail, and so in each world accessible from p, Px must be false of someitem in
the domain of that world. But, thereis no reason why that item should be the same in every world accessible
from p. Consequently, if we are to have ¢ P ¢ be the Skolemization of ¢(vx)Px, ¢ must be allowed to vary
its designation from world to world — it must be anon-rigid designator.

Unfortunately, the need for non-rigid designators brings a new set of problems, because the act of desig-
nation and the act of passing to an aternate world do not commute. Consider again the formula ¢ P ¢, where
cisnon-rigid. What might it mean to say thisistrue at world p? One possibility: it could mean the formula
Pcistrue at some world q; that is alternate to p, which in turn means that the designation of c at g; isin
the set assigned by the model as the meaning of P at g;. But there is another possibility: it could mean the
O P “property” holds at p of the designation of ¢ at p, which in turn means that for some world g, alternate
to p, the designation of c a p isin the set assigned as the meaning of P at gp. Even if g1 and g2 turn out to
be the same, these two versions need not coincide, sincein thefirst case ¢ designates at g1, after the moveto
an alternate world, and in the second case it designates at p, before the move. If ¢ isnon-rigid, these are not
necessarily equivalent. Sometimes these two versions are referred to as “ narrow scope” and “broad scope”
and one or the other is disallowed. Unfortunately, we need to interpret ) Pc one way for it to serve as the
Skolemization of ¢(Vx) P x, and the other way for (Vx){ P x — neither can be disallowed.

The problems are not over. After Skolemization, Herbrand expansion itself can be discussed. Now the
remaining quantifiers — all essentially existential — are replaced by disunctions of instances. But these
instances involve function and constant symbols, and since these can be non-rigid, we once again run into
the same kind of difficulties we saw above.
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3 Predicate Abstraction

In the lambda-cal culus a distinction is made between a term, such as x + 3, and the function it determines,
(AX.x+3). Wemakeasimilar distinction here between aformulaof first order logic, say ¢, and the predicate
abstracted from it, which we denote (AX.¢). (We use angle brackets hereto assist the eye.) The machinery of
first-order modal logic will be expanded both syntactically and semantically to allow for predicate abstrac-
tion. Once done, the two ways of reading the formula ¢ P ¢, discussed in the previous section, are represented
by two distinct formulas, {(Ax.Px)(c) for the narrow scope reading, and (Ax.{ P x)(c) for the broad scope
reading. We will see that this device solves our various difficulties, and does so in quite a natural way.

The device of predicate abstraction was introduced into modal logic in [16, 17] where an axiomatic for-
mulation (involving equality) was presented. In[4, 6] it was used to give a proof system for modal logic in
the style of Hilbert's classical epsilon-calculus (epsilon termsin modal logic are non-rigid). In [5] a modal
analog of atheorem of Smullyan was proved, using predicate abstraction in an essential way. This theorem
is Herbrand-like, but the expansion specifics are quite different. After this, interest in predicate abstraction
seems to have disappeared for atime, reviving more recently in [10, 11], where prefixed tableau system for-
mulations can be found. We will give yet another tableau version here.

Syntax We follow the presentation in [11]. We have an alphabet with infinitely many variables, constant
symbols, function symbols and relation symbols, A, v, =, D as propositional connectives, [, { as modal
operators, and V, 3 as quantifiers, along with parentheses and a comma as punctuation. In addition the sym-
bol X is present, as a predicate abstraction former. Terms are defined in the usual way, except that we write
ft1...ty instead of themoreusual f (1, ..., ty) inorder to minimize parentheses and make formulareading
easier. (We do asimilar thing with atomic formulas.)

We have a somewhat restricted notion of atomic formula: Rx . . . X, isan atomic formulaprovided Ris
an n-place relation symbol and x4, ..., X, are variables. Then formulas are built up from atomic formulas,
and free occurrences of variables are defined, al in the usual way, but with the following additional item.

o If pisaformula, x isavariable, and t isaterm, (AX.¢)(t) isaformula. Its free variable occurrences
are those of ¢, except for occurrences of X, together with all variable occurrencesin t.

The restriction on atomic formulas is smply for uniformity’s sake — we could allow, say, Pt where P
isaone-place relation symbol and t isaterm, treating it semantically asif it were (AX.PX)(t).

Example Thefollowing isaformula, assuming that P isaone-place relation symbol and t isaterm:

(YY)OAX.PX)(Y) D (AX.OPX)(1).

The only free variable occurrences are those variable occurrences (if any) int.

Semantics The version of Kripke model we use is essentially standard, except for the machinery to trest
non-rigidity.

Definition 3.1 A first-order frameisastructure (G, R, D), where G isanon-empty set (of possible worlds),
‘R isabinary relation on G (of accessibility), and D isadomain function, from members of G to non-empty
sets, meeting the monotonicity condition: pRq impliesD(p) € D(Q).

Aninterpretation in afirst-order frame (G, R, D) isamapping Z that assigns:

1. to each constant symbol ¢ and each p € G some member Z(p, ¢) € D(p);

2. toeachn-placefunction symbol f andeach p € G somen-placefunctionZ(p, f) : (D(p))" — D(p);
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3. to each n-place relation symbol R and each p € G some n-placerelation Z(p, R) € (D(p))".

A first-order frame, together with an interpretation, (G, R, D, ), isanon-rigid model.

In order to deal with truth in non-rigid models we need to assign values to free variables, just asin the
classical case.

Definition 3.2 Anassignment in anon-rigid modd M = (G, R, D, Z) isamapping s that assignsto every
variable x some member s(x) of U{D(p) | p € G}. By s [g] we mean the assignment that is like s on all
variables except X, and that maps x to a.

Notethat unlikeinterpretations, assignments do not depend on worlds. Also their values are not required
to exist in the domains of all worlds. Next we extend the action of assignments, in models, to arbitrary terms
at worlds.

Definition 3.3 Let M = (G, R, D, Z) be anon-rigid model, and s be an assignment in it. We define a
function, also denoted by s, on worlds and terms, as follows. For p € G:

1. if x isavariable, s(p, X) = s(X);
2. if cisaconstant symbol, s(p, ¢) = Z(p, ©);

3. if f isan n-placefunction symbol andty, ..., t, areterms,
s(p, fti...th) = Z(p, F)(s(p,t), ..., s(p, tn))-

Notice that meanings of terms are not always defined. For instance, if s(x) isnot in D(p), and f isa
one-place function symbol, since Z(p, ) isamapping on D(p), s(p, (X)) isundefined. It can be shown,
however, that this situation never arises when evaluating the truth of closed formulas at worlds, and thisis
the only case we are interested in.

Now, finally, we characterize the fundamental notion, M, p IF ¢[s], intended to mean: formula¢ istrue
at world p in model M, under the assignment s of values to free variables.

Definition 3.4 Let M = (G, R, D, Z) be anon-rigid model and s be an assignment in it.

1. If Risan n-place relation symbol, M, p IF Rx...xn[s] iff (S(p, X1),...,S(p, Xn)) € Z(p, R).
(Recall that all atomic formulasare of thisform, involving only variables and not more complex terms.
Also note that s(p, Xj) = s(X;) may not be in the domain D(p) for somei, in which case M, p IF
RX ... Xp[s] issimply false)

.M, plE (o v y)|s] iff M, plkg[s] or M, p - ¥[s].
.M, plF (e Ay)[s] iff M, plF ¢[s] and M, p I ¢[s].
. M, plF —g[s] iff not-M, p I ¢[s]

. M, pl-Ogp[s] iff M, qlF ¢[s] for al g € G such that pRg.

2

3

4

5 M, plk (¢ D ¥)[s] iff not-M, p IF ¢[s] or M, p I+ ¥[s].

6

7. M, pl- Qgp[s] iff M, g I ¢[s] for someq € G such that pRq.
8

. M, plF (¥X)g[s] iff M, p Ik ¢[s[£]] for al a € D(p).
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9. M, plk @x)¢l[s] iff M, pI- ¢[s[%]] for somea € D(p).
10. M, p Ik (Ax.@)(D)[s] iff M, p I ¢[s[X]] wherea = s(p, t).

The last item is the only one that isin any way non-standard. It says that for (AX.¢)(t) to be true at a
world, ¢ must be true when we think of x as standing for whatever t designates at that world. Thisisexactly
what one might expect.

Example We leave it to you to verify that M, p IF O{AX.Px)(c)[s] iff for some q € G such that pRq,
Z(q,c) € Z(q, P). And likewise, M, p I+ (AX.QOPXx)(c)[g] iff for some q € G suchthat pRq, Z(p,C) €
Z(q, P). Sincecisnon-rigid, Z(p, ¢) and Z(q, ¢) need not be the same.

Itis easy to verify that for a closed formula ¢ the choice of assignment does not matter. For closed ¢ we
write M, p I ¢ to mean M, p IF ¢[s] for some (all) s. Finaly, we say a closed formula¢ isvalid in M if
M, p Ik ¢ for al worlds p of the model M, and ¢ issimply K-valid if itisvalid in al models.

4 Basic Properties

Predicate abstraction plays no rolein classical logic, and the reason is quite simple — it is because universal
closures of the following are K -valid formulas, something we leave to you to verify.

1. Propositional Equivalences

@ (AxX.(p AY)) (1) = (AX.0) (1) A (AX.P) (1))
(b) (Ax.(p vV ¥)) (1) = (AX.0)(1) V (AX.P) (1))
(©) (AX.(p D YN = ((AX.p) (1) D (AX.¥) (1))
(d) (Ax.—@) (1) = —(Ax.p) ()

2. First-Order Equivalences. Assume x and y are different, and y does not occur int.

@ (Ax.(Yy)e)t) = (YY) (Ax.) (1)
(b) (Ax.@y)e)t) = @Y)(AX.0) (1)

Thusthe classical connectives and quantifiers are “transparent” to predicate abstraction. Thisis not the case
for the modal operators — we have seen that ¢ (Ax.Px)(c) and (Ax.{ P X)(c) need not be equivalent.

The machinery of predicate abstraction, while adding power, is a conservative extension. The following
isimmediate since if constant symbols, function symbols, and predicate abstraction do not play arole, the
definition of model from section 3 agrees with the usual one.

Theorem 4.1 If ¢ isa closed modal formula with no constant or function symbols, and no occurrences of
predicate abstraction, then ¢ isK -valid inthe present senseif and only if ¢ isvalidin all first-order K models,
as usually defined.

Actually thisresult can be strengthened. Suppose¢(cy, .. ., cn) isaclosed modal formula, defined inthe
usual way, allowing the constant symbolsc;, ..., ¢y to occur within atomic formulas. Let ¢(Xq, ..., Xn) be
the result of substituting new variablesfor occurrencesof cy, . . ., ¢,, which we assume are the only constant
symbols occurring (we also assume there are no function symbols). Then ¢(cy, ..., cy) isvaidin al first-
order K models, in the customary sense, if and only if (AX1. - -« (AXn.(Xq, ..., Xn))(Cn) - - -)(Cy) isK-valid
in the sense used here. Thus, in effect, “top level” predicate abstractions give the effect of rigid designation.

Finally, the replacement theorem carries over in a direct way.
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Theorem 4.2 Let ¢, X and Y beformulas, and let ¢’ belike ¢ except that an occurrence of X asa subformula
has been replaced with an occurrence of Y. If the universal closure of X =Y isK-valid, so isthe universal
closureof ¢ = ¢'.

5 Skolemization

The usual method of Skolemization appliesin the modal setting, provided we use non-rigid function symbols
and predicate abstraction. And asin the classical setting, there are two versions, one preserving satisfiability,
one preserving validity. In stating thefollowing, we assume the notion of positive and negative subformulais
understood. We call aquantified subformulaof aformula¢g essentially universal if it isapositive subformula
of theform (Vx), or if it is anegative subformula of the form (3x)yr. The notion of essentially existential
is defined dualy. Now, the following is more or less from [10].

Theorem 5.1 Suppose ¢ isa closed modal formula, and (Qy)y isa quantified subformula of it that occurs
within the scope of quantifierswhose variablesare x, . .., Xn. Let ¢* betheresult of replacing (Qy)y in ¢
with (Ay. ) (fXx1...Xn), where f isan n-place function symbol not occurring in ¢.

1. (Satisfiability Version) If (Qy)y is essentially existential in ¢, and all the quantifiers within whose
scopeit liesareessentially universal, then ¢ issatisfiablein someK model if and only if ¢* issatisfiable
in some K model.

2. (Validity Version) If (Qy)y isessentially universal in ¢, and all the quantifiers within whose scope it
lies are essentially existential, then ¢ isK-valid if and only if ¢* isK-valid.

The proof of thisis a straightforward extension of the classical one. Now, by repeatedly applying part 2
of the theorem above, all essentially universal quantifiers can be eliminated from agiven formula. We call
the result a validity functional form of ¢.

6 A Herbrand Theorem

When constructing a Herbrand expansion in classical logic we first Skolemize, then having specified a non-
empty domain D of terms, the Herbrand expansion essentially results by replacing each (positively occur-
ring) existential quantifier by a digunction of instances over D, and each (negatively occurring) universal
guantifier by a conjunction of instances over D. This can be turned into a recursive definition, based on the
complexity of the formulain question. We now give such a definition as alead-in to the modal version that
follows. We have made one modification to the conventional notion: we allow quantifiers to be replaced
by conjunctions or disjunctions of various lengths, which means that even with respect to a single domain,
Herbrand expansions are not unique. Our version counts, as Herbrand expansions, anything that is usually
counted as such, but also allows expansionsthat may have shorter proofssince “irrelevant” subformulas need
not be present.

Since Herbrand expansions have lost their uniqueness, instead of a functional definition, we give are-
lational one. The notation we useis: X — X', which is intended to be read, “ X’ is a classical Herbrand
expansion (over D) of X.” Thisis determined by the calculus below. (We include rules for D, and omit
those for A and v which are similar.)

Literal If Aisatomic, A— Aand —-A — —A.
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Propositional
X=X

—|—|X — —|—1X,

Neg

X - =X Y->Y X— X' =Y - Y’

Im —Im
XoY o X oy P oSy S ax oy P
Quantification For closed termsty, ..., t,in D,
P(X) = ¢'(X) +Quant —p(X) — —¢'(X) _Quant

@F)p(X) = ¢'(t) V... V¢'(t) =(VX)p(X) = =[@'(t) A ... A @' (th)]

Not surprisingly, the statement of amodal Herbrand theorem is more complex than in the classical case.
This complexity arises because the act of substituting aterm for afree variableis no longer as simple. Con-
sider, for example, theformulaP x, where P x isatomic. If wewant to “ substitute” the closed term f c for x
inamodal context, we must first introduce the machinery of predicate abstraction, and for thisformulathere
are essentially different ways of doing so. Either (Ax.OPx)(fc) or O{(AX.Px)(fc) will serve as ways of
binding x to fc. We could even have a“two-level” abstraction process, leading to (Ay.CI{(AX.PX)(fy))(c).
A layer of complexity is thus added because of the introduction of predicate abstraction.

In the calculus that follows, the propositional rules are the same asin the classical version, and straight-
forward modal and abstraction rules have been added. The essential change is that the quantifier rules have
been replaced by more complex ones (introducing variables, rather than closed terms), together with rules
for binding variables to terms. Since variables can be present, we do not use the terminology “Herbrand
expansion,” reserving this for cases where formulas are closed.

Definition 6.1 We say X’ isamodal Herbrand transform of the formula X if X — X’ isderivablein the
calculusthat follows.

Literal If Aisatomic, A— Aand —A — —A.

Propositional
X=X

—|—|X —_— —|—|X/

Neg

X=X Y>>V X=X =Y - Y

XoY—>xXoy TP xSy S ooy MP
Modal N VI
OX > 0OX +Nec “0OX = —0x —Nec
Abstraction
(kx.X)(t>§ - é/x.x/)(t) +Lambda ﬁux.x;(t); - :zf\/x.x/)(t) —Lambda
Quantification For new variables X, ..., Xn,
PX) = ¢1(X) ... ¢(X) = ¢n(X) +Quant

@) (X) = @1(X1) V... V ¢n(Xn)
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—9(X) = ~e1(X) ... —9(X) = —n(X)

—Quant
—~(VX)p(X) = =[@1(X1) A ... A @on(Xn)] Q
Binding For x not freein X,
X - X . X - =X .
X = o TBIN e oxam Bind

Note that in applying the rules, if we show, say, that ¢(x) — ¢’(X), and y isanew variable, we can also
show ¢(y) — ¢’(y). This observation is sometimes useful.

Example Hereisaderivation in the calculus above, beginning with a Literal axiom.

—-Py — =Py
=(VY)Py — =(Py1 A Py,)
—(YY)Py — =(Ay2.Py1 A Pyo)(f2)
O=(Vy)Py — O—=(Ay2.Py1 A Pyo)(f2)
O-=(Yy)Py — (Ay1.00=(Ay2.Py1 A Py2)(f2))(c)
O=(Vy)Py — (Az.(Ay1.0-=(Ay2.Py1 A Py2)(f2))())(d)

Note that while two variables were introduced at the step eliminating the universal quantifier, athird variable
was introduced by one of the binding steps. This cannot be ruled out if completenessis to be achieved, and
is asource of the complexity of first-order modal logic.

—Quant

—Bind

+Nec

+Bind
+Bind

Definition 6.2 Let ¢ be a closed modal formula, and let ¢* be a validity functiona form for ¢. If ¢** isa
modal Herbrand transform of ¢* and is a closed formula, we say ¢** isamodal Herbrand expansion of ¢.

If X hasonly essentially existential quantifiers, and X’ isamodal Herbrand transform of X, X’ must be
quantifier free. It follows that any modal Herbrand expansion of a closed formula must be quantifier free.

Theorem 6.3 (A Modal Herbrand Theorem) Let ¢ be a closed modal formula. ¢ isK-valid if and only if
some modal Herbrand expansion of ¢ is K-valid.

The classical Herbrand theorem reduces validity from afirst-order problem to an infinite set of proposi-
tional problems. So does the theorem above, in the sense that modal Herbrand expansions contain no quan-
tifiers. On the other hand, the K -semantics still involves the machinery of domain functions, since non-rigid
designators must designate something. The following says that, nonetheless, things are essentially proposi-
tional in nature.

Theorem 6.4 Thereisa decision procedure for the K -validity of closed formulas that are quantifier free.
Proofs of these two theorems will be found in the next several sections.
Example Consider the (K-valid) formula
vy [Py > Qyl > @[@Ex)0Px D> ¢Q4.

Inthis, (3x) isessentially universal, while both the other quantifiers are essentially existential. Consequently
avalidity functional form for it isthe following, where f isafunction symbol.

Ovy)[Py D Qyl D @[(Ax.0Px)(f2) D 0QZ.
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Now, another derivation using the calculus above,

Py— Py —-Qy— —Qy
—[Py> Qyl—> —[PyD>Qy]
—(Vy)[Py D Qy] = =[Py1 D Qyi]
—UvYI[PYy> Qy] —» —L[Py1 5 Qwi] B
—UY[PY D Qyl — —(ay1.0[Py1 D Qw])(fo)

In astraightforward way we can derive [(AX.Q0PX)(f2) D 0QZ — [(AX.0OPX)(f2) D 0 QZ — we omit
the steps (the rules for ¢ are analogous to those for [J). Then we can proceed as follows.

[(Ax.0Px)(f2) D 0QZ — [(AX.OPX)(f2) D 0Q7
F)[(AX.OPX)(f2) D 0QZ —
[(Ax.0Px)(fz1) D 0Qz] v [(AX.0PX)(fz2) D 0Qz]
@A)[(Ax.OPX)(fz) D 0QZ —
(Az1.[(AX.OPX)(fz1) D 0Qz] v [(AX.OPX)(fZ2) D ¢0Qz])(C)
[ x.OPX)(f2) D 0QZ —
(Az22.(Az1.[(AX.OPX)(fz1) D 0Qz] vV [(AX.OPX)(fZ2) D ¢0Qz])(0))(fc)

Now, combining the items above using + Imp,

Ovy) [Py D Qyl D @)[(Ax.0Px)(f2) D 0QZ7
—_
(Ayr.0O[Py1 D Qwi])(fo) D
(AZo.(AZ1.[(AX.OPX)(fZ1) D 0Qz] Vv [(AX.OPX)(fZ2) D 0Q2z])(c))(fo)

+Quant

+Bind

+Bind

So

(Ay1.0[Py1 D Qwil)(fe) D (Az2.(Az1.[(AX.OPX)(fz1) D 0Qz] v [(AX.0PX)(fz) D 0Qz])(0))(fc)
isaHerbrand expansion of J(Vy)[Py D Qy] D (32)[(3x)OPx D $QZ andis, in fact, valid.

7 Soundness

In this section we show the easy half of Theorem 6.3.

Proposition 7.1 Let ¢ beaclosed modal formula. If thereisa K -valid modal Herbrand expansion of ¢ then
 itself isK-valid.

Sinceaclosed formulag isK -validif and only if itsvalidity functional form ¢* isK -valid, the Proposition
above is an immediate consequence of the following.

Proposition 7.2 Let A bea closed modal formula with all its quantifiers essentially existential, and let B be
a modal Herbrand expansion of A. Then B > AisK-valid.

Proof In order to show thiswe must prove something more general. Suppose X isamodal formulawith all
itsquantifiersessentially existential (not necessarily closed) and suppose X — X' isderivableinthecalculus
of section 6. Then the universal closure of X’ © X isK-valid. Thisfollows by induction on the length of
the derivation of X — X’. Among more obvious things, the induction uses the fact that universal closures
of the following formulas are K -valid.
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1. XDY)=(Y D —=X)
2. (Y (X)) V-V (Xn) D @)Y (X)
3. (V)Y (X) D (Y (X)) A+ AP (Xn))
4 [(XOXHAY' DOV DOIX' DY) D(XDY)]
It also usesthefact that K -validity of the universal closureis preserved under the following transformations.
6. XOY=0OXD0OY
7. X2 Y = (x.X)(t) D (AX.Y)(1)
8. XD Y = X D (Az.Y)(t) provided z does not occur in X.
9. XDY = (Aaz.X)(t) DY provided z does not occur in Y.

We leave detailstoyou. =

8 A Tableau System

We will show aK-valid closed formulain validity functional form has aK-valid modal Herbrand expansion
by extracting one from acut-free tableau proof. A tableau system admitting predicate abstraction, using pre-
fixed formulas, was given in [10, 11], but this is not best suited to our present purposes. Instead we give a
new tableau formulation, extending the destructive tableau systems of [7, 8]. The formulation we present
is designed for machine implementation, and is not particularly convenient for people. We sketch the sys-
tem, followed by aproof of completeness and soundness, then use it to finish our proof of amodal Herbrand
theorem.

We find it convenient to use signed formulas: if X isaformula, T X and F X are signed formulas. Itis
signed formulas that appear in our proofs. Intuitively, T X says X istrue at someworld, and F X says X is
false at some world.

Customarily tableaus are presented as trees, but thisis not particularly useful for present purposes. Fol-
lowing [8] we take a tableau to be a set (or list) of its branches, and a branch to be a set (or list) of signed
formulas. Wewill usetraditional terminology and refer to asigned formulaas being on abranch, or abranch
as being of atableau, when what isreally meant isthat itisinit.

Classically, tableaus are refutation systems. To prove a closed formula ¢, we begin atableau consisting
of asingle branch, that containing only F ¢. Then we apply branch extension rules, to “grow” branches. A
branchiscalled closed if it containsadirect contradiction: T X and F X for someformula X. If each branch
is closed, the tableau itself is said to be closed. A closed tableau beginning with F ¢ constitutes a proof of ¢
— intuitively it shows the assumption that ¢ could be false leads to a contradiction.

In thekind of tableau we are presenting there are two broad classes of branch extension rules— destr uc-
tive and non-destructive. Non-destructive rules make small changes to branches; destructive rules replace
branches by entirely new ones. Modal operators require destructive rules — their application corresponds
semantically to moving from one world to another in amodel. Non-destructive rules are appropriate for the
classical connectives and quantifiers. (See[9] for amore extended treatment of the non-destructive rules.)

In order to treat predicate abstraction we add several new pieces of machinery to that which is customary
with tableaus. Firgt, associated with each branch of a tableau will be a non-negative integer, called a level
number. Tableau proofs will begin with alevel number of 0. Syntactically, the level number of a branch
represents how many times a modal branch extension rule has been applied on that branch. Semantically,
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if we think of abranch as a partial description of a possible world, its level number represents the distance
between the world being described and aworld at which the original root formulais satisfied.

Next, signed formulas containing free variables will be allowed in tableaus, and substitutions play arole.
Associated with each tableau will be a substitution, giving values for some (not necessarily all) of the free
variables present. We use o, o1, 0>, €tC. to denote substitutions. For aterm t, by to we mean the result
of applying the substitution o to t — similarly for formulas. Composition of substitutions is denoted by
concatenation: o102. The substitution replacing X1 by ti, ..., Xy by ty isdenoted {x1/t1, ..., Xn/tn}. All
thisis standard, and we assume it is understood. There is one item we use that is somewhat non-standard,
though. In proving tableau completeness we will make use of substitutions that have infinite domains. We
do not restrict substitutions to have finite support, asis often done. Of course, the substitutions that arisein
the construction of tableau proofs will have finite support.

A basicissueis. what kind of objectsdo substitutionsassign to freevariables. For thispurposeweenlarge
the language considerably. Proofswill be of closed formulas from the basic language, but will use formulas
and terms from the enlarged language.

First we expand the alphabet: for each variable, constant, and function symbol we add infinitely many
copies, one for each level number. Syntactically, if f isafunction symbal, its level n counterpart will be
denoted ", and similarly for constant symbols and variables. Intuitively, think of " asthe function that the
function symbol f denotesat aparticular possible world. Function and constant symbolswith levelswill not
appear in formulas, but are used by substitutions. Variables with levels can appear in formulas in tableaus.

Definition 8.1 Terms of level n are characterized as follows.
1. A variable or aconstant symbol of level k isaterm of level n for al n > k.

2. If fkisafunction symbol of level k, andty, ..., tm aretermsof level k, then f*ty, ..., ty, isaterm of
level nfor al n > k.

A term of level n for some n will be called an object expression.

For example, f3c?x3 isaterm of level 3, and also of levels 4, 5, .... Any term of level nisalso aterm
of level mfor al m > n. Thisis how the monotonicity condition on model domains comesin.

Definition 8.2 By alevel substitution we mean a mapping o that assigns to each variable of level nin its
domain some term of level n.

It iseasy to verify that the composition of level substitutionsis another level substitution. Formulas ap-
pearing in tableaus may contain free variables — these will al be variables with level numbers. Constant
and function symbols with level numbers will not occur in formulas, but they will appear in level substitu-
tion ranges.

Definition 8.3 If t isatermwith function and constant symbolsfrom the original language (i.e. without level
numbers), and n isanon-negativeinteger, by t @n we mean the result of replacing each function and constant
symbol of t by itslevel n counterpart.

Now to define the modal tableau machinery.

Definition 8.4

1. Atableauisapair (o, 7) where o isalevel substitution (the level substitution of the tableau) and 7
isafinite set of branches.
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2. A branchisapair (n, B) where n is a non-negative integer (the level number of the branch) and B is
afinite set of signed formulas.

Next we present the branch extension rules, and for this purpose we make use of the more-or-less standard
grouping of signed formulas into general types. We begin with the propositional connectives.

a |o1 B | B B
TXAY |TX TY TXVY |TX TY
FXVY |FX FY FXAY |FX FY
FXDY|TX FY TXDOY | FX TY

Now the propositional rules, which are non-destructive, are the following, familiar from other contexts.
Suppose (o, 7) isatableau and (n, B) isabranch of it. We say atableau (o, 7') isapropositional successor
of (o, T) if

1. o € B, B isBwitha removed and a1, oo added, and 77 is7 with (n, B) removed and (n, B’) added.

2. T=XeB,BisBwithT =X removed and F X added, and 7’ is 7 with (n, B) removed and (n, ')
added.

3. F=X e B,BisBwithF =X removedand T X added, and 7" is7 with (n, B) removed and (n, B’)
added.

4. B € B, By isB with g removed and 8, added, B, is 5 with 8 removed and 8, added, and 7" is7 with
(n, B) removed and both (n, 31) and {(n, 13,) added.

These rules can be given schematically in the following more familiar form. Notice that they do not
change either tableau level substitutions or branch level numbers.

o B T -X F X
“1 pr | B2 F X TX
o2

We will only be proving formulas that have been put into validity functional form, and hence that only
contain essentially existential quantifiers. Since atableau beginswith F applied to the formulabeing proved,
it follows that in our tableaus all quantifiers behave like universal ones. Consequently we only have one
category of quantifiers.

vy | y®@
T (¥X)e(X) | T (2
F @x)e(X) | Fo(2

In applications of this z must be an variable with alevel number, and ¢ (z) denotes the result of substituting
occurrencesof zfor all freeoccurrencesof x in¢(x). Now the quantifier rule, which isagain non-destructive,
isthis.

Suppose (o, 7) isatableau and (n, B) is a branch of it. We say atableau (o, 7') is a quantificational
successor of (o, T) if y € B, B'is B with y removed and y (x}), ..., y(x?) added, wherex7, ..., x7 arek
variables of level n that are new to the tableau, and 7' is 7 with (n, B) removed and (n, ') added.
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This rule is non-deterministic in its choice of k. Again neither level substitutions nor level numbers
change. The rule can be given schematically as follows.

%
y (x])

y (X9)
Where n is the branch level number, and the variables are new to the tableau.
For the modal rule we again use uniform notation.

TOX|TX
FOX|FX

We al'so use a“sharp” operator appropriate for K. For aset Sof signed formulas, S* = {vg | v € S}.

The modal rule is destructive. Branches get considerably maodified, and lose information. For thisrule
branch level numbers change.

Suppose (o, 7) isatableau and (n, B) isabranch of it. We say atableau (o, 7’) isamodal successor of
(0, T)if m € B, B isB* U {ng}, and 7’ is T with (n, B) removed and (n + 1, B’) added.

Again the rule can be given schematically as follows.

S
S, 7o
If thelevel number of abranch isn, and thisruleisapplied to the branch, the level number changeston + 1.
Finally, the rules for predicate abstraction. These change the tableau level substitution.

Suppose (o, 7) isatableau and (n, B) isabranch of it. We say atableau (o', 7”) is an abstraction suc-
cessor of (o, T) if

L TXxeX)(t) € B, B isBwithT (Ax.(X))(t) removed and T ¢(z") added, where z" isavariable
of level n that is new to the tableau, o’ = {Z"/t@n}o, and 7’ is 7 with (n, B) removed and (n, B’)
added.

2. F (Wx.p(X))(t) € B, B is B with F (Ax.¢(x))(t) removed and F ¢(z") added, where z" isavariable
of level n that is new to the tableau, o’ = {Z"/t@n}o, and 7’ is 7 with (n, B) removed and (n, B’)
added.

These too can be given schematically.

T (AX.0(X)) (1) F (AX.9(X)) (1)
To@) {Z"/t@n} Fo") ({z'/t@n}

Where z" is new to the tableau.

Definition 8.5 Let Sbe afinite set of signed formulas, o alevel substitution, and n a non-negative integer.
Then (o, {{(n, S)}) isatableau. By atableau for Sand o at level n we mean any tableau that results from
this by the application of O or more of the various successor rules: propositional, quantificational, modal, or
abstraction.
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Definition 8.6 Let (o, 7) beatableau, and (n, B) be abranch of it. We say alevel substitution t closesthe
branch provided there are atomic formulas A and B, with T Aand F B both on 3, and = unifies Ao and Bo'.
We say the level substitution t closes the tableau if it closes each branch.
We say atableau isclosed if somelevel substitution closesit.

Note: if atableauisclosed, alevel substitution that closesit can be found by asimple modification of the
unification agorithm, applied to A and B. Instead of starting the algorithm with the empty substitution, we
begin with o, the substitution associated with the tableau. And at further stages of the algorithm, in addition
to verifying that a binding does not violate the occurs check, it must be verified that it does not bind to a
variable of level n aterm of ahigher level.

Definition 8.7 A proof of aclosed formula X isaclosed tableau for {F X} and the null substitution at level
0.

Example We give atableau proof of the following:

VY)O(V2) (AX.RX2(Y) D (AX.Q0{(AZ.RXx2 (X)) (C).

The tableaus constructed only have single branches, so to keep notation simple we display the set of signed
formulas on it, and give the level number and the tableau level substitution separately. Initially, of course,
the substitution is null, {}, the level number is 0, and the set of signed formulas on the only branch isjust

{F (YY)O(V2) (AX.RX2 (YY) D (AX.Q0{(AZ.RX2 (fXx))(C)}.
The propositional « rule changes thisto

{T (VY)O(V2) (AX.RX2 (Y), F (AX.0{(AZ.RXx2 (fXx))(C)}.
Next an abstraction rule (with vg’ being anew variable of level 0) turns thisinto
(T (¥VO(VD (x.Rx2(y), F 0(az.Ruiz) (fo)),

and changesthe tableau level substitution to {v&’/co}. Next aquantificational rule (introducing one new vari-
able, v, of level 0) produces

(T O(V2) (Ax.Rx2 (19), F O(xz.Rvi2) (fv9)}.

Now the modal rule can be applied. Thisleavesthe tableau level substitution unaltered, but changesthe
branch level to 1, and the set of signed formulasinto

{T (v2)(Ax.Rx2 (19), F (1z.Rvdz)(fvD)}.
Applying the abstraction rule (with v% being a new variable of level 1) gives
{T (v2) (Ax.Rx2 (v9), F Rufv3},

and changes the tableau level substitution to {v?/cP, vi/f1c%). A quantificational rule, again introducing one
variable (v, of level 1), produces

{T (Ax.Rxv)(v9), F Rvdvi}.

Finally the abstraction rule gives
{T Rvévi, F Rv(l)v%},
and turns the level substitution into o = {v9/c?, v3/f1c?, vl/vI}.
This tableau closes, using the level substitution T = {v3/c®, v/ f1c%}, and thus we have a proof.
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9 Tableau Soundness

Tableau soundness arguments all have the same form, with the central items being that tableau rules preserve
satisfiability, but closed tableaus can’t be satisfiable. The key to such an approach isfinding a suitable notion
of satisfiability. We begin with this, sketch the main argument, and finally show how soundness is a con-
sequence. We must add to the classical tableau machinery something that can take level numbers and level
substitutions into account.

Since variables with levels can occur in formulas in tableau proofs, for this section we assume each as-
signment in amodel gives values for such variables, as well asfor variables without levels.

Definition 9.1 Let M = (G, R, D, Z) be anon-rigid model.

1. A world assignment of level nin M isamapping A that assigns to every non-negative integer < n
some member of G such that, forall i < n, AG)RAG + 1).

2. Leto bealevel substitution. A function symbol fkor aconstant symbol ck, of level k, isintherange
of o if it appears as part of theterm x'o for some variable x'.

3. Again let o be alevel substitution, and let A be aworld assignment of level nin M. We say Q isan
object assignment relative to o and A if: for each constant symbol c* of level k < n in the range of
o, Q(c¥) isamember of D(A(k)); and for each function symbol fK of level k < nintherange of o,
Q(f¥) isafunction from D(A (k)) to itself.

Now we extend an earlier definition to cover terms with levelsin a straightforward way.

Definition 3.3 Continued Assume o isalevel substitution, A isaworld assignment of level n, in M, and
Q2 isan object assignment relativeto o and A.

4. if ckisaconstant symbol (with k < n), s(p, ¢¥) = Q(c%);

5. if fXisan m-placefunction symbol (withk < n),
s(p, 41 tm) = QUEN)(S(P, ta), ..., S(P, tm));

6. if x<isavariableinthedomain of o, s(p, xK) = s(p, xKo) (if xKisnotin the domain of o, s(p, xK) =
s(x¥), as before).

Thus we interpret each constant and function symbol with level k as always having the meaning it has
according to the object assignment 2. Given this extended definition of s, Definition 3.4 retains its form,
though with abroadened meaning, since s now covers symbolswith levels. Now we can give the definition of
satisfiability that isneeded. Theideais, signed formulason abranch with level number n areto be considered
only in the world assigned to n.

Definition 9.2 Let (o, 7) be atableau, (n, ) be abranch of it, M beamodedl, A be aworld assignment of
level nin M, Q be an object assignment relativeto o and A. We say the branch (n, B) of (o, 7) is satisfied
in M with respectto o, A, and 2 if, for every assignment sin M (with the action of s extended as above):

1. M, An) - X[s] forevery T X on B, and

2. M, A(n) I X[s] for every F X on B.
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Thetableau (o, 7) is satisfied in M with respect to A and 2 if some branch of it is. Finaly the tableau is
satisfiable if it is satisfied in M with respect to A and 2 for some M, A, and Q.

As remarked above, the key to proving soundness is to show satisfiability is aloop invariant — that is,
if any branch extension ruleis applied to a satisfiable tableau, the result is a satisfiable tableau. We |eave the
verification that thisis so to the reader. The proof has a number of cases, but none of them are difficult.

Let X besome closed formula. If X hasatableau proof thereisaclosed tableau for {F X} and the empty
substitution at level 0. A closed tableau cannot be satisfiable. 1t follows from the loop invariance of satis-
fiability that the initial single-branch, single-formula tableau for {F X} and the empty substitution at level
0 cannot be satisfiable. It is easy to see that if X were false at any world of any model, this initial tableau
would be satisfiable. Consequently if X has atableau proof, X can not be false at any world of any model,
and hence X must be K-valid. We thus have proved the following.

Theorem 9.3 (Tableau Soundness) If the closed formula X has a tableau proof, X isK-valid.

10 Tableau Completeness

Tableau completeness also follows a familiar pattern, with additions to treat the extra machinery we have
introduced. In the tableau system as presented, we Skolemize before beginning atableau construction. Con-
sequently thereisno § rule. Let uscall asigned formulauniversal if it isof theform T ¢ and al quantifiers
of ¢ are essentially universal, or it is of the form F ¢ and all quantifiers of ¢ are essentialy existential. All
signed formulas that occur in atableau proof are universal in this sense.

Definition 10.1 We say thetriple (S, o, n) isworldly if: Sisaset of universal signed formulas, n isanon-
negative integer, all free variables occurring in S have levels that are < n, o isalevel substitution, and o
assigns a ground term to every variable occurring freein S.

We say the worldly triple (S, o, n) is consistent provided, for every finite subset § of S, no tableau for
S ando atlevel nisclosed

We say the worldly triple (S, o, n) is downward saturated if:

(S, o, n) isconsistent;

ain Simpliesa; and o arein S;
Bin Simpliesoneof g1 or By isin S;
T —-XinSimpliesF Xisin S
F—=XinSimpliesT Xisin S

o g & w d P

y in Simplies that for each closed term t of level n thereis some level n variable z", not in y, such
that y(z") isin S, and "0 = t;

7. T (AX.0(X))(1) in Simplies T ¢(z") isin Sfor somelevel n variable z", not in (AX.¢(X))(t), such that
"o =t@n;

8. F (AX.@(X))(t) in Simplies F ¢(z") isin Sfor somelevel nvariable z", notin (Ax.¢(X))(t), such that
"o =t@n.

Loosely speaking, downward saturation means closure under all tableau rules except the modal ones.
Now, the key step in proving completeness is the following.
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Proposition 10.2 Assume (S, o, n) is consistent, and there are infinitely many variables of level n that are
not in the domain of o. Then thereisa set S that extends S, and a substitution ¢’ that extends o, such that
(S, o', n) isdownward saturated.

We omit the proof of this proposition. Essentially it amountsto a systematic expansion of Sand o very
much like the systematic construction of tableaus that is generally at the center of completeness proofs for
classical tableaus. Given this proposition, a completeness proof proceeds as follows. First we construct a
kind of canonical mode.

e Let G consist of worldly triples that are downward saturated.
e For (S, 01, n) and (S, 02, k) in G, set (S, 01, N)R(S, 02, k) if:
1 Scs;

2. oo extendsoyq;
3. k=n+1

e D((S, o, n)) isthe set of closed terms of level n.
e For each constant symbol cand p = (S, o, n), Z(p, c) = c".

e For each k-place function symbol f and p = (S, o, n), Z(p, f) isthe function such that for level n
termsty, ..., t, Z(p, f)(t1, ..., tx) isthelevel nterm "ty ... t«.

e For each k-place relation symbol R and p = (S, o, n), Z(p, R) isthe relation such that, for level n
termsty, ..., t, Z(p, R)(t1, . .., t) istrue provided the signed formula T RZ, ..., z! € Sfor some
level nvariables z], ..., z; whereZjo =ty, ..., Zlo = tx.

We have thus defined a non-rigid model M = (G, R, D, Z) which we call a canonical model..

Theorem 10.3 (Truth Theorem) Let M = (G, R, D,Z) be a canonical model. Let p = (S,0,n) bea
member of G, and let s be any assignment in M that, as a mapping, extends o .

1 If Ty € Sthen M, p IF ¢[S];

2. If F ¢ € Sthennot-M, p IF ¢[9].

Proof Thisisshown by induction on the complexity of ¢. The atomic cases are directly by the definition of
M (the consistency requirement on downward saturation comes in for the F-signed half). Most other cases
are covered by the various downward saturation closure conditions. We give only the modal casesin detail.
We consider formulas of the form (g — those of the form (¢ are treated dualy.

Suppose first that the result is known for ¢, TOp € S, and s extendso. Let p' = (S, 0/, k) bean
arbitrary member of G and assume that pR p'.

Since pRp, S € S 0T ¢ € S. Then by the induction hypothesis, if ' extendso’, M, p’ IF ¢[s].
Now, the free variables of ¢ are the same as those of (g, and o assigns ground terms to all the variables of
O henceto those of ¢. Since pR p’, o’ must extend o, and since s’ extendso’, s’ also extends o . It follows
that s and o must agree on the variables of ¢, and hence so must s and s'. Since M, p’ I ¢[s'], we must
also have M, p’ Ik ¢[s]. Since p’ was arbitrary, it follows from Definition 3.4 that M, p I- Og[s].

Finally, suppose that the result is known for ¢, F U € S, and s extends o. It isnot hard to check that
if S* U {F ¢} were not consistent with respect to o and n + 1, then Swould not have been consistent with
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respect to o and n, contrary to assumption. Then by Proposition 10.2, thereisaset S extending S* U {F ¢}
and alevel substitution o’ extending o such that S’ isdownward saturated with respect too’ and n+ 1. Then
p = (S,0’,n+1)isinG and pRp’. By theinduction hypothesis, not-M, p’ I ¢[s] for every s’ extending
o’. Asabove, it follows that not-M, p’ I ¢[s], and so not-M, p IF Cgp[s]. =

Now all isin place for the following.

Theorem 10.4 (Tableau Completeness) If the closed formula X, in validity functional form, is K-valid,
then X has a K -tableau proof.

Proof Suppose X does not have aK -tableau proof. Then {F X} isconsistent with respect to the empty level
substitution and level number 0. Using Proposition 10.2, there is an S extending {F X} and a level sub-
gtitution o (extending the empty substitution, of course) such that (S, o, 0) is downward saturated. Then
p = (S 0,0) € G, and by Theorem 10.3, not-M, p IF X[s] for any s extending o (actually, since X is
closed, thisisfor any s). It followsthat X isnot K-valid. =

If no quantifiersare present in aclosed formula X, there can be only afinite number of different tableaus
for F X (up to achoice of free variables). It follows that we have a decision procedure for provahility, and
hence validity, of quantifier-free closed formulas. Thus we have verified Theorem 6.4 aswell.

11 Proof of Herbrand’'s Theorem

Let X beaclosed modal formula, which we can assumeisin validity functional form. If X isK-valid, it has
aK-tableau proof. In this section we describe how to extract from such a proof amodal Herbrand expansion
of X, together with atableau proof of it, thus completing our verification of the modal Herbrand theorem.
We do thisin two phases. First we produce amodal Herbrand transform of X, possibly containing free vari-
ables. Then we show how to instantiate these variables — something that is much more complicated than
its classical counterpart. We begin by extending the notion of Herbrand transform to signed formulas and to
entire tableaus. Recall that universal formulas are signed formulas in which all quantifiers act universally.

Definition 11.1 A modal Herbrand transform of the universal formula F X is any signed formula of the
form F X’ where X’ is a moda Herbrand transform of X. A modal Herbrand transform of the universa
formula T X is any signed formula of the form T X’ where =X’ isamodal Herbrand transform of —X. A
modal Herbrand transform of the tableau (o, 7) isany tableau (o, 7") that results by replacing each signed
formula of 7 by some moda Herbrand transform of it.

Now for phase one of our proof of the modal Herbrand theorem. Suppose the closed formula X, in valid-
ity functional form, has atableau proof. Then thereisasequence of tableaus, (o1, 71), (02, 72), ..., {0k, Zk)
where: (ok, k) isclosed, o1 isthe empty substitution; 73 = {(0, {F X})}; and each tableau except the first
results from its predecessor by the application of some tableau successor rule. We replace this sequence by a
sequence of modal Herbrand transforms that yield a tableau proof of amodal Herbrand transform of X. We
do so in such away that while formulas on branches are modified, level substitutions remain the same.

We work our way backward, beginning with (o, Zx). Thisis closed; say the level substitution t closes
it. Then on each branch of 7y there must be members T Aand F B, where A and B are atomic, such that
Aokt = Bogt. Now, T Aitself isthe only modal Herbrand transform of T A, and F B is the only modal
Herbrand transform of F B, sointhis case the situation is simple— replace all universal formulas present by
any modal Herbrand transformsfor them, and keep unchanged the level substitution ok. Thisyieldsatableau
that T also closes.
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Now supposewe have dealt with (oj 1, 7i +1) — we say what to dowith (o;, 7;). Thereare several cases,
depending on what tableau rule was applied to turn thei t" tableau into thei + 15. To begin, say that a propo-
sitional rulewasapplied — they areall dealt withinasimilar way sowe pick arepresentative case. Say (n, 3)
isabranchof (o7, 77), F X D Y isonit, and the « rulewas applied to produce (o1, 7i +1), wherethe branch
has been replaced by (n, B'), where B isBwith F X > Y removedand T X and F Y added. (oj+1 will be
the same as oj, though this plays no special role.)

By assumption, amodal Herbrand transform (o; 1, 7', ;) hasbeen constructed for (oi 1, 7 +1) (notethat
the level substitutions are the same). In this modal Herbrand transform, say T X was replaced by its modal
Herbrand transform T X', and F Y was replaced by its modal Herbrand transform F Y’. Then =X — =X’
and Y — Y’ are both derivable in the calculus of section 6, and it followsthat (X D Y) — (X’ D Y')is
also derivable, so F X" D Y’ isamoda Herbrand transform of F X D Y. Let (0i, 7;") be the tableau that
results when all the transforms that converted {(o;11, 7i+1) into {oj 1, Ti/+1> are applied to {(oj, 7j), and also
F X D Yisreplaced by F X" O Y. Note that an o rule application to (o, 7;") turnsitinto (oj 11, 7/, ;).

The other propositional rules are treated smilarly. The quantifier rules are not much different. Say in
(o7, 7i) thereisabranch (n, B) containing T (VX)¢(X), and thissigned formulawas removed from the branch
and T o(X]), ..., T o(x7) were added to produce (oj 11, Zi+1) (With oi11 = o). Again by assumption, a
modal Herbrand transform (o, 1, 7};1) has been constructed for (oj 41, 7i+1) — say each of T p(x{), ...,
T o(x7) werereplaced by their modal Herbrand transforms, T ¢1(X7), ..., T ¢k (xy) respectively. Then each
of =gj (X) = —¢;j(x) will bederivableinthe calculusof section 6. It followsthat —(YX)@(x) — —[@1(X]) A
A k(X)) isderivable, 0 T g1(X]) A ... A gk(X]) isamoda Herbrand transform of T (YX)¢(X).

Now transform the tableau (o, 7;) as we did in the propositional case, but replacing T (VX)¢(X) by
T o1(X]) A ... A gk(X). The transition from (oi, 7;') t0 (0i41, 7}’ ;) is now by a sequence of « rule ap-
plications, in place of the original y rule application. We omit details.

Suppose the transition from (oj, 7;) to {0j11, Zi+1) Was via an abstraction rule — say T (AX.@(X))(t)
was removed from branch (n, B), T ¢(z") wasadded, and oi ;1 = {Z"/t@n}o;i. And again, assume a modal
Herbrand transform (oi 11, 7', ;) for (oi 1, 7i1+1) has been constructed. Init, say T ¢'(2") is the modal Her-
brand transform of T ¢(2"). Then —¢(Z") — —¢'(Z") is derivable in the calculus of section 6, hence so is
= (AX. (X)) (1) = ={(AX.¢'(X))(1),andso T {(AX.¢'(X))(t) isamodal Herbrand transform of T (AX.@(X))(t).
Now transform (i, 7i) into (o, 7;") by replacing T (AX.¢ (X)) (t) with T (AX.¢'(X))(t) and otherwise making
the changes that turned (oi 11, 7i+1) into (oi 1, 7;' ). Thetransition from (i, 7') to (0i+1, 7, 1) istill by
an abstraction rule.

The modal caseis left to the reader.

Example Before going on to phase two of the proof, we give an example illustrating things thus far.
(W)UOVy)Rxy > U(F2)U(Vw) Rzw
isaK-valid closed formula. A validity functional form for itis
(V})OONVY)RxyD> O@F20(hw.Rzw) (f 2).

We give a closed K -tableau for this, then apply the process described above to produce a provable modal
Herbrand transformfor it, together with atableau proof. First, hereisatableau proof of thevalidity functional
form. We begin with the empty substitution and asingle branch with alevel number of 0. Wedisplay only the
set of formulas on the branch, rather than the whole tableau structure. At the start we have asingle formula

{F (v)OONY)RxyD O3F2)O(rw.Rzw) (f 2)}.
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An application of the « rule replaces this by
{T (v)OO(VYy)Rxy, F O3z 0(Aw.Rzw) (f 2)}.
A y rule application turnsthisinto
(T OOVy) RXy, F O@F2) 0 w.Raw) (f 2)}.
Next, the modal rule changes the level number to 1, and the branch contents to
(T OVY)RXy, F @20(w.Rzw)(f2)}.

The y rule again gives us
(TOVY)RXLy, FOw.RZw)(fzY).

Now the modal rule changes the level number to 2, and the branch contents to
(T VY Ry, F (Aw.RZw)(fzhH}.
The predicate abstraction rule changes the tableau substitution to {w?/ f 2z1} and the branch contents to
(T Vy)RXy, F RZw?}.

Finally, the y ruleturnsthis set into
(T ROY?, F RZw?).

A substitution that closesthisis t = {y?/f?x%, z1/x%}.
Now, apply the transformations given in the proof of the theorem above — we omit the steps. At theend,
the modal Herbrand transform we arrive at for

F (v)UONY)RxyD OF2)0{(Ahw.Rzw) (f 2)

F OORXy? 5> O0(Aw.RZw)(fZ1).

Thereisaclosed tableau for the set consisting of thisformulaand the empty substitution at level 0, and indeed,
T isthe substitution that closes the tableau.

We have now described how atableau proof of X can be converted into atableau proof of amodal Her-
brand transform of X. But thisisa“hybrid” result since the transform will contain free variables with levels,
and thus not be aformula of the original language but of the enlarged language introduced for the purposes
of the tableau proof procedure. Indeed, the soundness proof we gave for the modal tableau system only es-
tablished soundness for closed formulas!

The variables with levels that occur in the transformed tableau (o1, 77) above are those that arose from
y rule applicationsin the original proof of X, since the transformation process we gave eliminates variables
with levels that were introduced by abstraction rule applications. Phase two consists of removing all these y
rule free variables by instantiating them and, as remarked earlier, thisis somewhat more complex than it is
classically.

We explicitly note the obvious fact that if avariable x" of level nisintroduced into the tableau sequence
(01, T1), {02, T2), . . ., {0k, 1k) by ay rule application, it must be from arule application on abranch of level
n. A dlightly less obvious fact isthat, if T Z or F Z is present on a branch of level n in atableau proof of
X, Z must occur as a subformula of X within the scope of n nested modalities. Thisisan easy consequence
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of the form of the tableau modal rule. Carrying this observation over to the sequence of modal Herbrand
transforms, (o1, 77), (02, 73), . . ., {0k, 7/}, which yield atableau proof of the modal Herbrand transform X'’
of X, it follows that if the variable x" of level n occursin X/, it does so in a subformula that is within the
scope of n nested modalities.

Now we give details of the second phase of the proof of the modal Herbrand theorem — eliminating free
variables. First, as“ preprocessing,” there may be variablesin X’ that are not in the domain of . These we
simply instantiate, more-or-less arbitrarily, as follows. Say the level n variable z" occursin X', but it is not
inthe domain of 7. Choose an arbitrary constant symbol ¢, and let t" = 7{z"/c"}. Since t isamore general
substitution than 7/, ¢/ will close any tableau that t closes, so we can useit in place of . From now on we
assume the level substitution t assigns a ground term to each free variable of X'.

From here on the details are somewhat complex to present in general. We discuss arepresentative specia
case, to keep subscripts and superscriptsto aminimum. Let us say thelevel 3 variable x® occursin X'. Also,
the level substitution = closesboth (ok, Zk) and (ok, 7,) — say x3t = f2c!, where f isaone-placefunction
symbol and ¢ is a constant symbol. We say how to instantiate occurrences of x2 in X’. Theideais, loosely,
to mimic the action of t with predicate abstractions.

As noted above, each occurrence of x3 in X’ must be within the scope of 3 nested modal operators —
to keep things simple, say these operators are all [J, the processis similar if some of them are {. Pick one
occurrence of x3 in X’ — we say how to instantiate it. The occurrence of x2 that we picked is within the
scope of 3 nested modal operators, hence there is a subformula of X’, not within the scope of any further
modal operators, that schematically has the following form:

O (@ (@ X3y o) een,
Now, let u and v be new variables (without levels), and replace this subformula of X’ with the following:

O - O0v. - (@---v--) - )(fu) - ) (©).

Inatableau construction for X’ after thisreplacement hasbeen made, abstraction ruleswill causethelevel
substitutions associated with tableaus to, in effect, instantiate u to ¢, and subsequently v to f2ct. Thussome
of the behavior of the substitution ¢ has been “built into” the formulaitself, and one free variable occurrence
in X’ has been eliminated.

Continuing in thisway, each freevariablein X’ can be removed, producing aclosed formulathat still has
atableau proof — indeed, amost the same tableau proof.

Finally, X’ isamoda Herbrand transform of X. Using the Binding Rule of the calculus in section 6
(which has played no role in this section thus far), it is not hard to see that the alteration described above
to X’ produces yet another modal Herbrand transform of X. Since a closed formulaisfinally produced, we
have amodal Herbrand expansion of X, and it is provable.

Example Continued At the end of phase one of the proof we gave an example. The K-valid closed for-
mula (Yx)OO(Vy) Rxy D 0(32)0(Yw) Rzw was converted into itsmodal Herbrand transform OO RX0y? S
OO0 (rw.RZw)(fz1), and we saw there was atableau for the F-signed version of this that was closed using
the level substitution t = {y?/f?z%, zt/x%}. We now instantiate the free variables, as outlined above.

We preprocess by modifying t to deal with the fact that it assigns no valueto x°. Let ¢ be some constant
symbol, and compose the binding {x°/c®} with t, convertingitinto ' = {y?/f2c°, z1/c°, x%/c°}.

Now begin by eliminating the occurrence of y? in OORXCy? > O0(Aw.RZw)(fz). Doing so yields
the formula:

(.00, RXv) (fu))(c) D OO0(w.RZw)(fZY).
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Eliminating x° produces
(. (.00 w.Rrv)(fu))(c))(c) D O0(w.RZw)(fzY)
and finally, eliminating z* gives
(. (.00 Rro)(Fu)) (©))(©) D (ks.00(hw. Rsw) (£5))(©).

Thisisaclosed formula, isamoda Herbrand expansion of (vx)OO(Vy)Rxy D O(F2)0(Vw)Rzw, and is
provable. We leave the checking of thisto you.

12 Conclusion

Wedid not discuss equality above. Predicate abstraction lendsitself naturally to theincorporation of equality
into modal logic (see [10, 11]). Our modal Herbrand theorem extends directly to admit equality. We omit
the rather straightforward details.

If nomodal operatorsare present, predicate abstraction playsno essential role— theclassical connectives
and quantifiers are transparent with respect to it. If it is eliminated from modal-free formulasin the obvious
way, the modal Herbrand theorem and its proof as given above turn into a classical version.

Finally, the modal Herbrand theorem as we have given it offers no assistance to those interested in auto-
mated theorem proving. We derived the existence of avalid Herbrand expansion from a tableau proof, and
tableau proofs themselves are natural candidates for automation. However, Herbrand's original proof of his
result, as corrected in subsequent years by others[13], is aong quite different lines. Perhaps a study of his
methods might yield something applicable to the automation of proof search in the modal area. Also, we
found it necessary to introduce the mechanism of predicate abstraction. As we have urged elsewhere, this
device enlarges the expressive power of first-order modal logic in useful ways. We encourage the theorem
proving community to devote some effort to implementing proof methods for it.
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