|

Non-classical logics
and the independence results of set theory
by

MELVIN FITTING
(Lehman College, C. U. N. Y.)

In the 1960’ many famous independence results in set theory
were first established using a newly created technique called
forcing. Once this technique was discovered very quickly other,
quite different, techniques for achieving the same results were
found, techniques which are as interesting in themselves as the
uses to which they may be put. In this paper we discuss some of
these techniques, principally those based on using the well known
non-classical logics S4 and intuitionistic logic. We try to show
how such a role for non-classical logics is a natural development,
one which makes such logics into things of use rather than the
objects of curiosity they have traditionally been to the classically
oriented mathematician. Finally we discuss briefly the notions
of forcing and Boolean valued models and the interrelations of
all these approaches to the problem.

A time honored method for proving the consistency of theory
B relative to theory A has been to find within an intuitive model
for theory A a model for theory B. Having done so, the work
generally may be converted into a finitistic, proof-theoretic
argument that the consistency of theory A implies the consistency
of theory B. Probably the classic example of such a relative con-
sistency proof is the familiar one for a (two dimensional) non-
Euclidean geometry relative to (three dimensional) Euclidean
geometry. If one fixes a sphere in Euclidean space, and interprets
the non-Euclidean term ‘line’ to refer to a great circle on this
sphere, a model for the non-Euclidean axioms is produced. To
turn this argument into a finitistic relative consistency proof
now is simple. We define the ‘translate’ X of a statement X of
non-Euclidean geometry as follows. In X replace each reference
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to ‘line’ with a reference to ‘great circle on a sphere G’. Then it
may be shown that if X is any axiom of the non-Euclidean geomet-
ry, X" is a theorem of Euclidean geometry. It follows that the
translate of each non-Euclidean theorem is a Euclidean theorem.
In particular, if a contradiction were derivable in non-Euclidean
geometry, its translate, still a contradiction, would be a Euclidean
theorem.

Another classic example of such a relative consistency proof is
that for Euclidean geometry relative to real analysis. Here the
‘translate’ is defined using Cartesian coordinates.

Godel’s proof of the consistency of the generalized continuum
hypothesis (GCH) is of the above pattern [6, 7]. He produces a
model for the axioms of set theory together with GCH within
an intuitive model for the axioms of set theory alone. As above,
this produces a finitistic relative consistency proof. In this case the
model is that of the ‘constructible’ sets, those sets which must
occur in every model for the axioms of set theory which contains
all the ordinal numbers. The translation procedure corresponding
to those mentioned above is, informally, replace every reference
in X to ‘set’ by a reference to ‘constructible set’. Call the resulting
statement X*. Then, if X is an axiom of set theory, or if X is the
GCH, X" is a theorem of set theory. Once again, if a contradiction
followed from the axioms of set theory together with GCH, the
translate of that contradiction would be a theorem of set theory
alone, which would thus be inconsistent.

Now, in order that we may carry out the translation described
in the above paragraph, the notion of constructible set must be
definable without reference to notions like “in every model”.
This can be done. There is a formula of first order logic, L(x),
having one free variable, with € as the sole predicate symbol,
which, in each model for the axioms of set theory, is true of
precisely the constructible sets. Thus, the translation procedure
may be more properly specified as follows. Let X be a first order
logic statement having € as its sole relation symbol. By X* (called
“X relativised to L") we mean the result of replacing, in X, each
subformula of the form (Vx)P(x) by (Vx)[L(x) 2> P(x)] and of the
form (3x)P(x) by (3x)[L(x) A P(x)]. Informally, we say the formula
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L(x) defines the model of constructible sets within any model for
set theory. Such models, those definable within set theory models
by formulas, are called inner models. Relative consistency proofs
in set theory using inner models are intuitively natural things,
and are clearly akin to the relative consistency proofs of geometry
discussed above.

Unfortunately, there are inherent limitations on the method
of proving relative consistency using inner models. It can be
shown, for example, that this method is inadequate to establish
the independence of GCH [12]. That is, there is no formula F(x)
in the language of set theory, having the property that X" (X
relativised to F) is provable in set theory where X is any axiom of
set theory or is the negation of GCH. To show independence,
then, something else must be tried; possibly a natural generaliza-
tion of the method of inner models.

There are many interesting first order logics besides classical
logic: intuitionistic logic, modal logics, many-valued logics; and
for each of these adequate and intuitive model theories have been
developed. The Shepherdson result about inner models says
there is no classical logic inner model in which the axioms of set
theory are true but the GCH is false. It does not say anything
about the possibility of there being a formula F(x) which defines,
in each model for set theory, a (Kripke) intuitionistic logic model
in which all the axioms of set theory hold, as well as the negation
of GCH. Thus it does not rule out an inner model sort of proof
of a result like: if classical set theory is consistent then the GCH
can not be deduced from the axioms of set theory using intui-
tionistic logic. (I do not know if such a proof can be carried out.)
Of course, such a result, if established, would be only a curiosity.
What we want is an independence result in classical logic.

There are, however, several well-known connections between
classical and intuitionistic logic which are of interest here. One
such is a result of Godel [4] which says: if S is a set of statements
none of which involve V or 3, and X is a statement likewise not
involving V or 3, then

St X if and only if S+ X
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(We are using |¢ and }; for classical and intuitionistic deducibility
respectively.) Now, teaming this up with the discussion above,
we have the following more promising possibility. If we could
produce an inner intuitionistic model in which all the axioms of
set theory and the negation of GCH held, but expressed in
(classically equivalent) forms which do not involve V or 3, then
we would have the classical independence of GCH. (Again I do
not know if this can be done.)

Another possibility is given by the following from [9]. If S
and X do not involve V, then

StcXif and only if ~~S |, ~~X.

(Here ~ ~Sis the result of prefixing ~ ~ to each member of S.)
Again, if we could produce an intuitionistic inner model in which
(classically equivalent) forms of the set theory axioms not involv-
ing V held, but ~GCH also held (all prefixed with ~ ~) we
would have the classical independence of GCH. This can be done
in a natural manner [3] and is, in form, very similar to the inde-
pendence proof of Cohen [1] for GCH.

Yet another possibility is to use the modal logic S5. There are
simple translations of classical logic into S5, for instance the
following. Let X be a classical statement, define X° to be the
result of replacing every subformula Y of X by (Y. Likewise, if
S is a collection of statements, S° is the set of translates of mem-
bers of S. Then -

S |_C X lf and Only lf S° 1‘55 X°.

Now, an appropriate S5 inner model would establish classical
independence of GCH. (I don’t know if this can be done either.)

S4 can be used in a similar manner. Let us define X* to be the
result of replacing, in X, each subformula Y by [1<{Y, and define
S* analogously. Then it can be shown that

S Fe Xif and only if $* Fos X.

Here it doesn’t matter whether S4 includes the Barcan formula
or not [3]. Once again, a suitable S4 inner model would establish
the classical independence of GCH. This can be done, and is also
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closely related to the proof of Cohen [1]. It has a special interest,
because, as Godel has observed [5], the S4 necessity operator
has many essential properties of the notion “provable”. Thus the
translation used here amounts to replacing classical truth by
provable consistency. It is an interesting notion and I wish I
could present some satisfying reasons why it very likely ought to
help in showing the classical independence of GCH apart from
the fact that it actually does. Unfortunately, I can’t.

Later on, in this paper, we will say more about these S4 inner
models. But in order to place them in their proper setting we
first discuss Godel's construction of the inner model of construc-
tible sets.

The intention of the axioms of set theory is to describe fully
the intuitively conceived universe of sets. These are thought of
as being all those sets one obtains by starting with the empty set
and applying the basic operations of set theory “sufficiently often”.
The basic operations it suffices to consider are those of power set
and union. But “sufficiently often” is most reasonably taken to
mean « times, for any ordinal «, and so this becomes circular.
Nevertheless, something may be made of this. Suppose V is some
model for the axioms of set theory. We may define, for each
ordinal « € V, a set R, as follows.

R,=0;
Ry .+, =power set of Ry,
Ri= Ugyi R, (for X a limit ordinal).

Then by our intuitive notions it is reasonble that V be exactly the
collection of those sets x such that x € R, for some ordinal «.
That is, that V'= U, R,. In fact, this is often explicitly taken as
an axiom of set theory; it is called the axiom of regularity.

Godel’s construction of an inner model is a modification of
this. In a sense, it replaces the notion of power set of A by that
of definable power set. (See [1] pp. 85—87.) We may make this
precise as follows. Let A be some set. Let P(x) be a formula of
set theory with only x free. Call P(x) restricted to A if

1) any constant of P(x) denotes an element of A; and
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2) the quantifiers of P(x) are of the forms (Vy € A) and
By € V).

Then we may form a set B,
={x €A |P(x)}.

Call B a predicatively definable subset of A. Let F(A) be the
collection of all predicatively definably subsets of A. Now, in-
stead of the above R, transfinite sequence, Gddel used the
following M, sequence:

M0=®-
a+1 :;(M(l)
My=Ugcn M,.

Then, L, the class of constructible sets, is the collection of those
x such that x € M, for some ordinal «. It is not clear whether V'
and L should be the same according to our intuitive conception
of set; nonetheless, L, whether or not it coincides with V, is a
model in which all axioms of set theory, as well as GCH, hold.

This construction of L associates, in a natural way (the domain
of) a classical logic model with each ordinal number. The model
associated with a+ 1 grows out of that for « in a reasonable man-
ner. We want to generalize this procedure in a natural way to
associate a (Kripke) S4 model with each ordinal. To simplify
things we will only work with constant domain models, those in
which the Barcan formula holds. Furthermore, the collection of
possible worlds will be the same from ordinal to ordinal. We will
use the notation (G, R, k, Sa) to denote the S4 model associated
with the ordinal «. Here G is a collection of possible worlds, R
is a transitive, reflexive relation on G, S, is a set of constants,
and k, is a relation between possible worlds and statements with
constants from S,. We assume the usual S4 properties, namely
for each T' € G,

ke (XAY)if and only if I'Ey X and T E. Y;
I' ko~ X if and only if not-I" F, X;
T ko (3x)P(x) if and only if T' F, P(c) for some ¢ € s;;
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I'ke OX if and only if for each [1€ G such that
TRA, Ak X.

(We assume all formulas have € as the only predicate symbol.)

Now suppose, somehow, {G, R, Eq, Su> has been defined. We
want to define (G, R, Fa+1, Su+1) in a natural way from it. Well,
suppose P(x) is a formula with all constants from S, and with only
x free. We create a new constant, cp, associated with P(x). Let
Sw+1 consist of all such new constants, as well as all members of
Se. Now we define kq4, by specifying it for atomic statements of
Sa+1, which uniquely determines it for all such statements.
Clearly what we want is something like: I' Fouqy (d€¢p) if T Fq
P(d), where I is a possible world. The following states this precise-
ly. For each T € G,

1) ifc, d€Sy, let TEguy (d€c)if TEq (d€0);

2) if d€Sy and ¢p € Sus1—S,, let T Fouq (d€cp) if
I' ko P(d);

3) if dp € Sus1—Sq, let T kqsq (dp € ¢) provided there
is some member a € sq such that I' ko [(Vx) (x € a=
=P(x))]* and T ko4, (a € ).

In clause 3) the “ refers to the ‘[(1<>’-translation of classical logic
into S4 discussed earlier. The intent of this clause is to ensure
that when we are done the axiom of extensionality will hold.
Observe that the condition I' k44, (a € ¢) is covered by clauses
1) and 2).) ’

Thus we have defined <G, R, kq+1, Su+1y from (G, R, Eq, 5o).
Next, let A be a limit ordinal. We simply let s, = U,y s.. We
require that Tk (d€c¢) if T Eq (d € ¢) for some «<A. Thus we
specify <G, R, Ea, ).

Finally we may define a limiting ‘class’ model. Let s= U 4 S.
Let T'E(d€c)if T'" ko (d € ¢) for some ordinal «. We have then
specified our ‘class’ S4 model <G, R, E, s), which is completely
determined once an initial model, <G, R, k,, s,> is specified.
This is a natural generalization of the Godel M, sequence. In
fact, if s,=© and G consists of a single possible world, the corre-
sponding S4 sequence is only a notatiomal variant of the M,
sequence.



140 MELVIN FITTING

We haven’t yet said how all this is to begin, what we are to
take for an initial model. We could, of course, take s,=@, but it
is not necessary to be so restrictive. If we merely assume <G, R,
Fo, So» is, itself, a set, and that ‘(1 translates of extensionality
and regularity axioms hold in it, then all the techniques involved
in showing L is a classical logic set theory model readily adapt to
this sequence of S4 models, and demonstrate the following:

If {G, R, k,, so» satisfies the conditions given above, and if X
is any theorem of set theory, X* is valid in <G, R, F, s>.

This is the S4 inner model generalization that we wanted.

We have considerable leeway in our choice of (G, R, F,, 5.
All kinds of conditions may be built in at the start, so to speak.
For instance, we may begin with an initial model with F, having
a great degree of symmetry. If this is properly done, in the corre-
sponding class model the translate of the negation of the axiom of
choice will be valid. Another choice of initial model provides a
class model in which the translate of the axiom of choice is valid
but the translate of ~GCH is also. The essence of the construc-
tion here is to produce an initial model in which the constants
which are to play the roles of ¥,, N; and ¥, in the limiting class
model closely correspond to the sets which are ¥, N; and N,
in the model L, but the N, constant has so many subsets that
its power set will be at least N, in the final class model. We
do not give details here. In [2] specific such initial models
are given for a corresponding intuitionistic logic generaliza-
tion; the appropriate initial models for this S4 version are essent-
ially the same. In either case the models are basically those of[1].

Thus, even though the classical logic inner models were demon-
strably inadequate to establish the independence results referred
to above, a reasonable generalization of the inner model method
to include standard non-classical logics works very well. This is
not the approach Cohen took, though it is basically the Scott-
Solovay Boolean-valued model approach. Furthermore, all these
approaches to the independence results of set theory are closely
related.

Cohen [1] developed a notion called forcing and used it to
construct classical (but not inner) models establishing indepen-
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dence. As has been observed by others [8, 10] his notion of forcing
has a great deal of similarity with the notion of validity in Kripke
intuitionistic logic models, and in [2] we carried out the indepen-
dence proofs using exclusively these intuitionistic logic models.
Cohen’s method of constructing classical set theory models using
the notion of forcing, when suitably applied, can be used to
demonstrate the connections between intuitionistic logic, S4,
and classical logic which we made use of above. In fact, the tech-
niques of forcing and of non-classical logic independence proofs
are the same. The primary difference between them is in the way
one thinks about them, not in the mathematical technique.

The Scott and Solovay approach [see 11] may be looked at as
another generalization of the inner model method. Instead of
working with classical logic whose two truth-values form the
simplest Boolean -algebra, they work with logics whose truth-
values form a more general Boolean algebra. Specifying a Boolean
algebra then specifies a logic, not necessarily classical logic, but
one closely related. For each such logic they define a transfinite
sequence of models ending with a class model, again in a way that
naturally generalizes the M, sequence. No matter what the
particular Boolean algebra chosen, in the resulting class model all
theorems of set theory are valid. Then appropriate choices of
Boolean algebras produce class models establishing the various
independence results. The relationship between this approach
and the S4 approach is more or less standard. There is a well-
known algebraic model theory for S4, closure algebras, based on
Boolean algebras. Standard connections between these closure
algebras and Kripke S4 models provide the means for converting
between Boolean-valued independence proofs and S4 indepen-
dence proofs. Similar algebraic results provide the connection
between Boolean-valued proofs and intuitionistic logic based
proofs. Chapter 14 of [2] covers this in detail.

The S4 based independence proofs and the intuitionistic logic
based independence proofs are quite stmply related, via the
standard embeddings of intuitionistic logic into S4. Thus all these
approaches are equivalent in the sense that an independence proof
based on one approach can be translated into an independence
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proof based on any of the other approaches discussed here. Never-
theless, each approach has its own reason for being; what is ‘na-
tural’ using S4 models may not be using Boolean algebras, and
vice versa. A multitude of possible approaches is a virtue. The
reasonable question to conclude with is a necessarily vague one:
Why have these particular inner model generalizations worked?
What do they have in common? What is behind it all?
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