MELVIN FITTING

A SYMMETRIC APPROACH TO AXIOMATIZING
QUANTIFIERS AND MODALITIES

-

1. INTRODUCTION

We present an axiomatization of several of the basic modal logics, with
the idea of giving the two modal operators [] and © equal weight as far
as possible. Then we present a parallel “axiomatization of classical
quantification theory, working our way up through a sequence of rather
curious subsystems. It will be clear at the end that the essential
difference between quantifiers and modalities is amusing in a vacuous
sort of way. Finally we sketch tableau proof systems for the various
logics we have introduced along the way. Also, the “natural” model
theory for the subsystems of quantification theory that come up is
somewhat curious. In a sense, it amounts to a “stretching out” of the
Henkin-style completeness proof, severing the maximal consistent part
of the construction quite thoroughly from the part of the construction
that takes care of existential-quantifier instances.

2. BACKGROUND

It is contrary to the spirit of what we are doing to take one modal
operator as primitive and define the other, or, one quantifier as
primitive and define the other. So, by the same token, we take as
primitive all the standard propositional connectives too. Thus, we have
available all of A, v, ~, 2,00, O, V, 3. We also take as pnmmve a truth
constant T and a falsehood constant 1. 2

For our treatment of propositional modal logic we assume we have a
countable list of atomic formulas, and that the set of formulas is built up
from them in the usual way. We will use the letters “ X, “ Y, etc., to
denote such formulas.

For quantification theory, we assume we have a countable list of
varidbles and also a disjoint countable list of parameters. We will use
the letters “x™, “y”, etc., to denote variables, and “a”, “b”, etc,, to
denote parameters. Formulas are built up in the usual way, with the
understanding that a sentence contains no free variables, though it may
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contain parameters. We follow the convention that if ¢(x) is a formula
with only x free, then ¢(a) is the result of replacing all free occurrences
of x by occurences of a in ¢.

We will use Kripke’s model theory for modal logics (and an analog
for quantificational theories, to be described in Section 4). For us, a
Kripke model is a quadruple (¥, ®, R, i) where: (1) G is a nonempty
set (of possible worlds); (2) ® is a possible empty subset of ¥ (of
so-called queer worlds); (3) Rt is a relation on ¥ (of accessibility); and
(4) I is a relation between members of % and formulas meeting the
following conditions (we write T'lf X as short for not — I I+ X):

for everyl'e ¢

(a) FFTand T 1;

(b) FF(XAY)IffTIF X and i+ Y;
(c) FNH(Xv Y)ifTkXorTIF Y;
(d) 'k ~ XiffTIF X;

(e) FI’F(X>Y)iffTFX orTIHY;

for everyF'e @
) FFOX but T'FO X;

foreveryI'e -

(g I'FOX iff for every A€ ¢ such that FRA, AlF X
(h) ['FO X iff for some A€ 4 such that TRA, AlF X.

Thus, in a queer world, anything is possible, nothing is necessary. But
otherwise, necessary truth means truth in all accessible worlds. A
Kripke model in which ® = ¢ is called normal. See Kripke [2] and [3].

We also will be making much use of uniform notation, as introduced
in Smullyan [6]. For this purpose, the nonatomic formulas. of pro-
positional logic are grouped into a-formulas (those that act con-
juctively) and B-formulas (those that act disjunctively). These, and
their components, a,, a, and B, B,, respectively, are presented in the
following charts:

a |011 I (42} B l Bi lﬁz
(XAY) X Y (XvY) X Y
~XvY) |~X]| ~Y ~(XAY)| ~X |~Y
~(X:>Y) X | ~Y (X2Y) ~X|Y

~~X X X
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Notice that (b)-(e) in the definition of a Kripke model above gives us

Thaiff TIFe, and T e,
T B iff T B, or Tl B,.

Indeed, this could be used instead of (b)-(e).

We extend this uniform notation to the modal operators (as in Fitting
[1]) by defining the v-formulas (necessaries) and w-formulas (possibles)
and their components v, and m, respectively, as follows:

v l Vo w | o
). ¢ X OX X
~OX | ~X ~LCX| ~X

Notice that (f)~(h) in the definition of a Kripke model above, taken
together with (d), give us the following equivalent conditions:

for every I'e ®,
(") I'Fabut T w;

forevery'e - &
(g) TI+ v iff for every A € ¢ such that 'RA, Al v;
(h') [k iff for some A € ¢ such that T'RA, Alk m.

Finally we present uniform notation for the quantifiers, as in Smullyan
[6] or as more fully developed, Smullyan [7]. The quantified sentences
are divided into y-sentences (universals) and §-sentences (existentials).
This time, rather than components, we have instances, ¥(a) and 5(a),
one for each parameter a.

Y l ¥(a) 8 | &(a) -

(Vx) ¢(x) | &(a) (3x) ¢(x) | ¢(a)
~(3x) ¢(x) | ~ ¢(a) ~(Vx)¢(x) | ~ ¢(a)
The idea is, in a classical first-order model in which the domain consists

of the set of parameters, and each parameter is interpreted as naming
itself:

v is true iff for all a, y(a) is true;

8 is true iff for some a, 8(a) is true.
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So much for background.

3. MODAL LOGICS, AXIOMATICALLY

Let us assume that we have an axiomatization of the classical pro-
positional calculus, with modus ponens as the only rule. We will build
on that in our introduction of rules and axioms pertinent to the modal
operators.
Modal logics are often formulated with a rule of necessitation, which
we could give as
Vo

But this gives a central role to the v-formulas and, for no reason other
than autocratic whim, we want to develop modal logic as far as possible
giving equal weight to both v-and w-formulas, giving to both neces-
saries and possibles a fair share. After a certain amount of experimen-
tation we hit on the following curious rule:

(M) o V Vo

LA 4

(we use M for modalization). As a matter of fact, rule M is a correct rule
of inference, as the following argument shows.

Suppose (4, ®, R, I) is a Kripke model, and my v v is valid in it
(holds at every possible world). Let I' € ¢; we show 'l wv v. Well, if
I" e @, that is, if I" is queer, then I' It 77; so, trivially, T’ 7 v v. Otherwise,
I' e ¥—®. Now suppose I' - 7. Then it must be that in every A such that
F'RA, we have Alf- mo. But mp v v is assumed valid in our model, so it
holds at every such A. Thus for every A such that TRA, Alk v; hence
'k v. Thus again T'lF v ».

Rule M (which is actually four rules when translated out of uniform
notation) is quite a useful rule. It is rather easy to show that, by using it,
one may derive the usual interdefinitions of the modal operators (as
mutual equivalences). Also one may show the following are derived
rules:

X>oY XoY
Ox-0Y OX>QY
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Then one may show, in the usual way, that replacement of proved
equivalences holds as a derived rule:

X=X

Z=Z

where Z' results from Z by replacing some occurrences of X in Z by
occurrences of X'. Here we have used = as an abbreviation for mutual
implication. (Actually a stronger version may be shown, concerning
“semisubstitutivity” of implication, in which we must take into account
the positiveness and negativeness of occurrences as well. The details
needn’t concern us here.)

Now go back and look again at the justification we gave for rule M.
In the argument that «v » held at the nonqueer world I we never
needed that m, v v, held at every world of the model; we only needed
that it held at every world accessible from I'. But to say that m, v v,
holds at every world accessible from I is to say that [(J( 7 v v) holds at
I". Thus, the same argument also shows the validity in all Kripke models
of the schema

M1) Omvw]=[wv ]

Let us add it as an axiom schema then.

If we do so, it is not hard to show that we have a complete axiomatic
counterpart of the Kripke model theory as given in section 2. That is, X
is provable in the axiomatic system just described iff X holds at every
world of every Kripke model. To show this, one may show complete-
ness directly, using the now-common Lindenbaum-style construction,
or one may show this axiom system is of equal strength with one
standard in the literature, and rely on known completeness results. We
skip the arguments. ‘

The logic axiomatically characterized thus far is called C in Seger-
berg [5]. It is the smallest regular modal logic (see Segerberg [5]).

Now, in the model theory for C, one can have queer worlds in which
everything is possible but nothing is necessary. Also there are no special
conditions placed on the accessibility relation %, so there can be
“dead-end” worlds, worlds from which no world is accessible. In such a
world, everything is necessary, nothing is possible. So, our next item of
business is to rule out such strange worlds.
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Worlds in which nothing is necessary may be eliminated by postulat-
ing that something is necessary. Let us, then, add the axiom

M2) r.

The model theory appropriate to this (with respect to which one can
prove completeness) is all Kripke models in which there are no queer
worlds, that is, all normal Kripke models. The logic axiomatized thus
far is the smallest normal logic, and is usually called K (see Segerberg
[5D.

Next, worlds in which nothing is possible may be eliminated by
postulating that something is possible. We take as an axiom

M3)  OT.

The model theory appropriate to this is all normal Kripke models in
which every world has some world accessible to it. The logic is
generally called D. (Again, see Segerberg [5]).

Finally, we might want to restrict our attention to models in which
each (normal) world is accessible to itself (in which the accessibility
relation is reflexive). To do this one adds either (or both) of

(M4) V2O vy

To=> T

The logic thus characterized is T.

Note that T > OT is an instance of the second of these schemas, and
since T is a tautology, OT follows by modus ponens. Thus with M4
added, M3 becomes redundant.

REMARKS. One goes from C to K by adding [IT as an axiom. It is of
some interest to consider a kind of halfway point, where instead of
adding [JT as an assumed truth, we take it as a hypothesis. That s, form
the set S of formulas X such that [T > X is provable in C. This set S is.
itself, a (rather strangely defined) modal logic, intermediate between C
and K. It is closed under modus ponens, but not under rule M. Rather, it
is closed under the weaker rule.

D(’H’o \' Vo)
O(mvyw)’

which is equivalent to Becker’s rule. It is, in fact, the logic axiomatized
in Lemmon [4] as P2, but without his axiom OX 2 X (our M4).
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If we strengthen things a bit, by considering those X such that
T = X is provable in C plus axiom M4, one gets the Lewis system S2.
(Again, see Segerberg [5], chapter four.)

One can also play similar games with axiom M3 (<>T) to produce
interesting logics. We know very little about them.

4. QUANTIFIED LOGICS, AXIOMATICALLY

There is an obvious analogy (of sorts) between the modal operators and
quantifiers. What we do in this section is to parallel the development of
section 3, substituting quantifiers for the modal operators to see how far
the analogy extends when things are done the way we did. The idea is
simple: (Vx) may behave like [J, (3x) like O, vy like v and 8 like . This
may be so; we will see.

The language now is first order. Once again we assume a pro-
positional-logic base with modus ponens as the sole rule.

First, the analog of rule M is

8(a) v y(a)
Svy

And, as a matter of fact, this is a correct rule of inference in classical
first-order logic. This argument is left to the reader.

Using rule Q, one may show analogs of the results listed in section 3
based on rule M. Thus, one may derive the usual inter definability of the
quantifiers (again, as mutual implication), and one may show that
replacement of proved equivalences holds as a derived rule.

Now, if you actually thought through the “justification” of rule Q,
almost certainly you also showed the validity, in all first-order models,
of the schema

(Q1) (Vx)[8(x) v y(x)] =2 [8 v v]).

So let us add it as an axiom schema. We might, by analogy, call the
resulting logic QC. It thus has rule Q and schema Q1.

The following is a reasonable question: What is an adequate model
theory for QC, one with respect to which completeness can be shown?
Well, the following rather curious one will do. We simply translate the
corresponding modal model theory, making suitable adjustments to
take care of the fact that quantified sentences have many instances, but
modalized formulas have single components. We have chosen, for

rule (Q)

.
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simplicity, to leave out any mention of the notion of an interpretation in
a model. A more elaborate treatment would have to include it, but the
following is enough for our purposes.

A model is a quintuple (4, ®, 2, R, ) where: (1) Gis a nonempty
set (of possible worlds); (2) ® < %; (3) 2 is a mapping from members of
¢ to nonempty sets of parameters; (4) R is a relation on ¥ and (5) I+ is
a relation between members of ¢ and sentences such that

foreveryIF'e ¥,
conditions (a)—(e) as in section 1;
for every 'e @,
®) Tk (3x)e(x) but T'IF (Vx)(x);
foreveryF'e 4—-@

(2) FH(Vx)p(x) iff for every Ae ¢ such that T'RA, and for
every a€ @ (4), Al ¢(a)

(h) I'lF (3x) @(x) iff for some A € 9§ such that TRA, and for some
ae P(A), AlF ¢(a).

Now, a sentence X is a theorem of the logic QC iff X holds at every
world of every such model. We leave the correctness half to the reader.
Note that if ¢(a) is provable in QC,so is the parameter variant ¢(b).
This will be of use in proving correctness. And we briefly sketch the
completeness half in the next section.

We note that we could restrict models so that, for each world I, 2(I')
is a singleton. It makes no difference. Now we can continue with our
development, paralleling that of section 3. )

In the quantifier models above there can be “queer” worlds (mem-
bers of @) in which everything exists, and hence no universal-sentences
hold. Such anomalies can be eliminated by adding the postulate

(Q2) (VAT

Doing so gives us a logic we may call QK. An adequate model theory
for it is one that consists of all models of the sort described above, but
with ® always empty, that is no “queer” worlds.

Next, there may still be worlds from which no world is accessible. In
such a world, every universal sentence holds, but no existential. They
behave rather like empty-domain models of first-order logic. They may

1
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be ruled out by adding the axiom

(Q3) @ExT.

Let us call the resulting logic QD. Its model theory is that of QK with
the additional requirement that for every world T there must be some
world A such that FRA.

Finally (?) we may add an analog to M4, namely

(Q4) vy>vla) or
8(a)> & (or both).

As might be expected, Q3 then becomes redundant. We can call the
logic thus axiomatized QT. Its model theory is that of QD with the
restriction that the accessibility relation R be reflexive.

We have reached the end of our parallel development (obviously,
since we have matched everything we did in section 3). But we do not
yet have the usual first-order logic. One doesn’t want classical first-
order models with lots of possible worlds in them: a classical model
should be a one-world model.

Now, to only consider one-world Kripke modal models is to trivialize
modal logic; it renders the modal operators useless. Necessary truth
becomes the same thing as truth. That is, A>0A is valid in all
one-world models. Of course, this is not desirable. Modal operators are
supposed to do something; they are supposed to have an effect; they
ought not be vacuous.

Well, it is precisely at this point that modal operators and quantifiers
diverge. Quantifiers can be vacuous. Let ¢ be a sentence (hence with
no free variables). Then (Vx)¢ ought to mean nothing more than ¢
itself. So our final quantificational axiom schema is, simply,

(Q5) ¢ >(Vx)e, where ¢ is a sentence.

When this is added, conventional classical first-order logic is the result.

5. COMPLETENESS, HOW PROVED

In a sense, the proof of the completeness of the quantifier system QC
with respect to the model theory presented in the previous section is a
“stretching out” of the usual Henkin completeness proof for first-order
logic. Let us sketch what we mean by this.

Recall that the usual Henkin argument runs as follows. Take a
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consistent set, extend it to a maximal consistent one, then throw in
“witnessess” for the existential quantifiers. But that will destroy maxi-
mality, so extend to a maximal consistent set again. But that may add
new existential quantifiers, so add new witnesses, and so on. One
sequentially alternates a maximal consistent construction with an
existential-instantiation construction (and then takes the limit). It will
be seen shortly that the completeness proof for QC really amounts to a
separation of these two constructions.

First we say what consistency means. A set S is inconsistent if, for
some finite subset{A,,..., A,} = S,(A;A... A A,) D L isatheorem of
QC. A set S'is consistent if it is not inconsistent. We adopt this definition
in part because the deduction theorem is not available for QC. Indeed,
we do not get the deduction theorem for any of the proper subsystems
of quantificational logic presented in section 4.

Next, partition the set of parameters into countably many disjoint
sets, each with countably many members: Py, P, Ps,....

Let F be a sentence not provable in QC; we produce a countermodel
for F. Without loss of generality we assume any parameters of F are in
Py.
First, extend {~F} to a maximal consistent subset of the set of all
sentences with parameters in P;; call this I'e. And set P(I'r) = P;.

Next if there are no y sentences in I'r, do nothing (but call I
“queer”). Likewise if there are no & sentences in I'r. do nothing.
Otherwise, using rule (Q), it is not hard to show that if y;, 1, 73, . . . and
8 are in I'r. and a € P, (hence is new to I'g) that y,(a), ¥(a),
vs(a), ..., 8(a) is consistent. (Using Q1 it can be shown that any finite
number of y sentences is equivalent to a single one; this is needed here).
This in turn can be extended to a maximal consistent subset of the set of
all sentences with parameters in P, U{a}. Call it T',. And set P(I',) =
{a}, and TeRT,. Do this sort of thing for each & sentente in I,
producing a whole batch of sets [',, I'y, ., .. ., all accessible from I'r
under R. Now repeat the process with each of these new maximal
consistent sets, then with the sets that will arise from that, and so on.

Finally, define I between the various sets I' that arise this way, and
sentences, as follows. If T is “queer”, I'lF 8 for all 8. If A is atomic,
I'lF A iff AeT. And finally, the conditions of section 4 can be turned
around to say how to define |F (inductively on formula degree) now that
we have covered the atomic case. When this is done, a model results,
for which X e I'>T'I X (but not conversely). And it will be a counter-
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model to F, since ~F T,

Notice that in the proof just sketched, the maximal consistent
construction gives the worlds, while the existential instantiation moves
things from one world to another. This is what we meant by “stretching
out” the Henkin construction.

Adding axioms (Q2)-(Q4) modifies the construction in obvious ways.
We leave this to the reader.

Now we can ask, What is the effect on this construction of also
imposing that final axiom schema (QS5), ¢ > (Vx)¢? Very simply, it
makes things cumulative. Notice that, in our model, if T®RA, then
moving from I to A, in effect, drops one quantifier from each sentence.
But ¢>(Vx)e allows us to add one quantifier, so—the effect is
neutralized. Briefly, if we assume (QS5), then if I'lF ¢ and T'RA, then -
Al ¢. For, if Tl ¢, since also 'l ¢ 2 (Vx)¢, we must have Tl (Vx)e.
And since I'RA, then Al some-instance-of-¢. But since the quantifier
was vacuous, this means A+ ¢. Now, that things are cumulative if (Q5)
is imposed means the limit (=chain-union) part of Henkin’s proof can
be carried out. And thus a conventional classical model results.

This sketch must suffice. Details, though slightly devious, are far
from devastating.

1. SEMANTIC TABLEAUX

We show how the tableau system of Smullyan [7] for propositional logic
may be extended to handle the logics discussed in section 4. We begin
with a brief sketch of the system that suffices for propositional logic.

First, proofs are in tree form (written branching downward). There
are two branch-extension rules:

.

a B
A AN
a3 B Bz

(If & occurs on a branch, a; and a, may be added to the end of the
branch. If B8 occurs on a branch, the end of the branch may be split, and
B added to the end of one fork, B, to the end of the other.)

A branch is called closed if it contains A and ~ A for some formula
A, or if it contains L, or if it contains ~T. A tree is called closed if every
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branch is closed. A closed tree with ~X at the origin is, by definition, a
proof of X.

We begin by adding to the above a tableau rule to give the modal
logic C. In words, the rule is as follows. If, on a branch, there are
v-formulas, and there is a #-formula, then that m-formula may be
replaced by o, all the v-formulas by the corresponding w-formulas,
and all other formulas deleted.

We schematize this as follows. First, if S is a set of formulas, define

S# = {VQI ve S}.
Then the rule is

S, T
S#, mo (provided S# # ¢),

where this is to be interpreted as follows: if S U {7} is the set of formulas
on a branch, it may be replaced by S# U {m,} (provided S# is not
empty).

EXAMPLE. We show (X > ~O ~ X is provable using this rule.
The proof begins by putting ~((JX > ~O ~ X) at the origin, then
two a-rule applications produce the following one-branch tree:

~OX>~0~X)
‘OXx

~~O~X

o~ X.

Now take S to consist of the first three formulas, and 7 to be O ~ X.
Then S# = {X}, which is not empty, so the rule says the set of formulas
on the branch may be replaced by S# U{mo}, namely :

X
~X

and this is closed!

REMARK. Because of the way trees are written, an occurrence of a
formula may be common to several branches, but we may wish to
modify (or delete) it using the above rule on only one branch. Then,
simply, first add new occurrences of the formula at the ends of all the
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branches that are not to be modified, then use the above rule on the
branch to be worked on. C

Now the other modal logics can be dealt with easily.

The logic K was axiomatized by adding [JT. In effect this says there
are always v-formulas available, hence S# can always be considered to
be nonempty. And, in fact, the appropriate tableau system for K is the
one above without the provision that S# be nonempty.

The logic D had OT as an axiom. In effect, this says there is always a
ar-formula around, so an explicit occurrence of 7 need not be present to
apply the tableau rule. Properly speaking, a tableau system for D results
from that of K by adding the additional rule:

S

S#

Finally the logic T had as an axiom schema v > v,. Well, simply add the
tableau rule
. 4
2
(it can easily be shown that the D-rule above is redundant).

For quantifiers we proceed analogously of course. Thus, for a
parameter a, and a set S of first-order sentences, let

S(a) ={y(a)| ye S}.

Then a tableau system for QC is the Smullyan propositional system
plus the rule (to be read in a similar fashion to the one for C above)

S, 8
S(a), 8(a)
provided
(1) a is new to the branch;
(2 S (a)# ¢.

For QK, drop the requirement that S(a) be nonempty.
For QD, add the rule

S
S(a)
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_provided a is new to the branch.
F\or QT, add the rule
X
(a)
for any parameter a.
(This makes the QD rule redundant).

And finally, for first-order logic proper we want the “cumulativeness’
that ¢ > (Vx)¢ brought; that is, as we go on in a tableau construction,
sentences should never be deleted. Well, we could replace the QK rule
by

S, 8
S, S(a), 8(a)

provided a is new to the branch.
The only other quantifier rule now is

.
v(a)
It is not hard to see that these are equivalent to the simpler set
)

=
8(a) anew ¥(a)

and we have exactly the first-order system of Smullyan [7].
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