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Abstract. Many powerful logics exist today for reasoning about multi-agent systems,
but in most of these it is hard to reason about an infinite or indeterminate number of
agents. Also the naming schemes used in the logics often lack expressiveness to name
agents in an intuitive way.

To obtain a more expressive language for multi-agent reasoning and a better naming
scheme for agents, we introduce a family of logics called term-modal logics. A main feature
of our logics is the use of modal operators indexed by the terms of the logics. Thus, one
can quantify over variables occurring in modal operators. In term-modal logics agents can
be represented by terms, and knowledge of agents is expressed with formulas within the
scope of modal operators.

This gives us a flexible and uniform language for reasoning about the agents themselves
and their knowledge. This article gives examples of the expressiveness of the languages
and provides sequent-style and tableau-based proof systems for the logics. Furthermore we
give proofs of soundness and completeness with respect to the possible world semantics.
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1. Introduction

In this article, we describe a new family of modal logics, namely the first-
order term-modal logics, where we by term-modal mean that any term can
be used as a modality. The specific logics we discuss are the term-modal
versions of the modal logics K, D, T, K4, D4, and S4. Sequent-style and
tableau-style proof systems for the logics are given, and their soundness and
completeness are shown.

An earlier version of this article, where the soundness and completeness
proofs were omitted, and which contained less discussion about related work,
appeared as (Fitting et al., 2000). .

1.1. Motivation

Many researchers have been interested in the use of multi-modal logics for
knowledge representation see e.g. (Halpern, 1993; Fagin et al., 1995; Meyer
and van der Hoek, 1995), although most of them have investigated the use
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of a finite set of modalities, indexed by the first » natural numbers, usually
denoted either [1], [2], ..., [n] or K4, K2, ..., K,. Each number is here
naming some agent. By agent we mean any system, e.g. a human or a
computer program, to which we can ascribe knowledge. When we instead
use an infinite set of modalities we can reason about a dynamic society of
agents, where some agents might vanish and new agents may appear.

In the family of multi-modal logics presented in this article, any term can
denote an agent. This makes naming of agents easy and the logics expressive.
The use of complex names for agents, possibly involving variables, makes it
easy to model a society of agents, and give names to new agents by their
relationship to already existing agents. For example, to express that the
agent mother(z) thinks (or knows, or believes) that the agent z is good, we
can write [mother(x)]good(x).

The standard multi-modal logics allow us to reason about beliefs of par-
ticular agents, but provide very limited facilities to reason about beliefs
of groups of agents or agents themselves. In our language, we can distin-
guish a group of agents by specifying their properties. For example, to
express that every Christian believes in the existence of God, we can write
Vz(christian(z) O [z]Jy God(y)).

An example of a society of agents is the collection of computer processes
on some system. Here the logic with its infinite complex naming mechanism
can be used to specify requirements of the system as a whole and the proof
system can be used to check that these requirements are satisfied.

When the computer processes spawn new processes, the society of agents
(i.e. the number of processes) grows, and the naming mechanism can be used
to refer to the newly created processes. As the number of processes spawned
by the program may not be known beforehand, it is convenient to have an
unlimited set of names for these new agents.

1.2. Background

Fitting (1983) proves soundness and completeness of (single-)modal logics.
In this article we introduce some new definitions, and extend the proofs for
term-modal logics.

Fagin et al. (1995), van der Hoek and Meyer (1997) all use modal logics
to describe multi-agent systems. Their approaches are based on a finite set of
agents, and they also discuss the use of common and distributed knowledge.
By using the logic presented in this article, their work might be extended
to handle dynamic agent societies with an easy naming mechanism, where
quantification over agents is possible.
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1.3. Overview

The rest of this article is structured as follows. Section 2 defines the syn-
tax of term-modal logics, and Section 3 their semantics. In Section 4 we
introduce sequent calculi and in Section 5 tableau calculi for these logics. In
Section 6 we establish soundness of the sequent calculi. The completeness
proof is rather lengthy and split between two sections. In Section 7 we de-
fine the main technical tool used for the completeness proof, the so-called
consistency property, and prove a Model Existence Theorem for consistency
properties. Using this theorem, we establish completeness of sequent calculi
in Section 8. Soundness and completeness of sequent calculi implies sound-
ness and completeness of tableau calculi for term-modal logics. As a step
toward automated reasoning in term-modal logic in Section 9 we introduce
free-variable versions of tableau calculi for term-modal logics. In Section 10
we give an example refutation in such a calculus, in order to illustrate some
distinctive features of free-variable calculi for term-modal logics.

2. Syntax

. The term-modal logics are obtained from the standard predicate modal logics
by adding modal operators indexed by terms. In this section we give a formal
definition of the syntax of term-modal logics.

We assume a signature 3. consisting of three disjoint sets of constants,
function symbols and relation symbols. Usually, the signature is assumed to
be fixed, but in some situations we will vary it for technical convenience. In
addition to the symbols of ¥, we will use various infinite sets P of parameters
disjoint from the symbols in . In some situations parameters will behave
as new constants, in others as elements of a domain on which formulas are
evaluated. The signature is not necessarily finite or countable. For every
signature 3, we denote by 3~ the signature obtained from ¥ by omitting
all constants and function symbols.

DEFINITION 1 (Term). Suppose P is a set of parameters and V a set of vari-
ables disjoint from the set of parameters.. The set of terms of the signature
Y with parameters in P and variables in V, denoted 7 (X U P, V) is defined
inductively as follows.

1. Each constant in ¥ is a term.
2. Each variable in V is a term.

3. Each parameter in P is a term.



136 M. Fitting, L. Thalmann, A. Voronkov

4. If t1,...,t, are terms and f is an n-ary function symbol,
then f(t1,...,t,) is a term.

In this article, we can restrict ourselves to a fixed set of variables, however
the set of parameters (and sometimes the signature) will vary. So we will use
a simpler notation 7 (XU P). A term is called ground if it has no occurrences
of variables.

DEFINITION 2 (Formula). Let P be a set of parameters. The set of formu-
las of the signature ¥ with parameters in P, denoted F(¥ U P), is defined
inductively as follows.

1. If R is a relation symbol of arity n and t,...,t, are terms in 7 (3 U P),
then R(t1,...,t,) is an atomic formula. Any atomic formula is a formula.

2. If A and B are formulas, then so are (AA B), (AV B), (A D B) and -A.

3. If A is a formula and ¢ is a term in 7 (X U P), then [t]A and (t)A are
formulas.

4. If A is a formula and z is a variable, then Vr A and Jx A are formulas.

The notions of free and bound occurrences of variables are defined as
usual, with the exception of the following item:

e The free occurrences of variables in [t]A and (t)A are all occurrences of
variables in ¢ plus all free occurrences of variables in A.

A formula is called closed, or a sentence if it has no free occurrences of
variables (but note that it may contain parameters). An 3-formule is any
formula 3z A. A literal is either an atomic formula A or its negation —A.
Literals A and —A are called complementary to each other.

Intuitively, when interpreting the formulas in a multi-agent context, the
meaning of the formula [t]A is that the agent denoted by the term ¢ knows
(believes etc.) the information represented by the formula A. The formula
(t) A intuitively means that the agent denoted by t considers it possible that
A holds, i.e., it is not the case that the agent knows the contrary (which can
also be expressed by —[t]-A).

In the proof systems introduced later we make no assumptions about the
kind of knowledge expressed. The knowledge could in fact be just beliefs,
i.e., an agent might believe something which is false.

Tt is easy to add axioms of knowledge, if one is interested in describing
a specific kind of knowledge. An example of this is the knowledge axiom,
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[#]A D A, which intuitively means that if an agent x knows something, then
it is true. More about different epistemic interpretations of modal logic can
be found in, e.g., the books by Hintikka (1962) or Lenzen (1978).

NoOTATION 3. For the rest of this article, we will denote

e variables by z,y, z, u, v; e formulas by A, B, C;

e parameters by p; e sets of formulas by S, ¥;

e terms by s,t; e literals by L;

e sets of parameters by P; e domain elements by d (i.e.
elements in the set D, which

e logics K, D, T,K4,D4,54 is defined later);

by the generic symbol L.

We write A(x) to denote a formula A with (zero or more) free occur-
rences of the variable z and write A(t) to denote the replacement of all free
occurrences of z by a term t. Before the replacement, we rename in A(z) all
bound occurrences of variables that have free occurrences in t.

2.1. Related work

The current trend in modal and description logics is to define expressive but
still decidable logics. Our logics are undecidable since they contain first-order
classical logic. Moreover, the expressiveness of our logics is, in a way, higher
than that of the standard first-order modal logics, since first-order modal
logics can be interpreted in our logics by using a single constant in modal
operators (at least for cumulative domains, but our results can be extended
to the constant domain versions of the logics as well). Logics with modalities
indexed by terms were studied by Grove and Halpern (1991), (1995). These
logics are more expressive in some aspects and less expressive in other aspects
than ours. Namely, these logics can handle equality and agents with special
properties. However, there are restrictions on how formulas can be built
in these logics, so some well-formed formulas of our logics cannot be used
as formulas in (Grove and Halpern, 1991; Grove, 1995). For example, the
formula [z]P(z) is not a valid formula in (Grove, 1995), since in Grove’s
framework z in [r] must be of the agent sort, but the formula P(x) in the
scope of [z] must not have free variables of the agent sort.

Another related framework are the modal logics with names, see (Passy
and Tinchev, 1985; Passay and Tinchev, 1991; Gargov and Goranko, 1993;
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Blackburn, 1993). In these logics a second sort of atomic formula is intro-
duced (these are called names or nominals) and it is stipulated that such a
formula is satisfied at a specific world of the model. Intuitively, a nominal
names the world in which it is satisfied. Hybrid logics take this a step fur-
ther. In these logics, nominals are treated as variables open to binding. See
e.g. the work by Blackburn and Seligman (1993), Blackburn and Tzakova
(1998) and Areces et al. (2000). A tableau calculi for hybrid logics was
presented by Tzakova (1999). The main difference between the logics of our
paper and hybrids logics is that in hybrid logic one quantifies over state vari-
ables naming worlds, while in this article, we quantify over variables naming
accessibility relations.

Propositional dynamic logic (or propositional modal logic of programs,
as it was called then) was introduced in (Fischer and Ladner, 1977; Fischer
and Ladner, 1979), following ideas of (Pratt, 1976). First-order dynamic
logic appear in e.g. (Harel, 1979) and (Kozen and Tiuryn, 1989). Dynamic
logic is a logic with complex modalities just as the term-modal logics. The
main difference between term-modal and dynamic logic is the structure of
the indexes. In dynamic logic modal operators are indexed by programs,
either atomic or composed of subprograms or subformulas joined by modal
connectives ;, U, %, or 7. In term-modal logic the modal operators are indexed
with terms. There is a close syntactic connection between the logics. Term-
modal logic can be translated into dynamic logic, by translating every modal
operator [t] into [z := t] where z is a dummy programming variable. The
semantics of the logics are different though. In dynamic logic, the program
x := t is usually deterministic, while in our framework, we are interested in
having several worlds reachable by term t. The simplified semantics of the
term-modal logic also let us develop the proof theory further. In this article,
we provide a free-variable tableau calculus for the term-modal logics.

Modal action logics, see e.g. (Ryan et al., 1991), are another example of
application of our logic. In (Ryan et al., 1991) a logic for actions is given,
but no proof procedure is given. _

In general, the approach in this article contrasts to other approaches,
by considering a simple logic with terms in modal operators and develop
a complete free-variable proof system, while other authors either limit the
expressibility or fail to provide a complete proof procedure.

3. Semantics

In this section, we describe a possible world semantics for the logics. The
semantics is defined through the notions of frames and structures. 1t differs
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from the standard semantics of first-order modal logics by the treatment of
the reachability relation on worlds: the reachability relation is indexed by
elements of the domain. We assume all definitions be given w.r.t. a nonempty
set D, called the domain.

3.1. Frames

DEFINITION 4 (Frame). A frame over D is a triple (W, D, —), where
1. W is a non-empty set, called the set of possible worlds.

2. D is a mapping from W to the set of subsets of D. The set D(w) is
denoted by D,, and called the domain of w.

3. — is a relation on W x D x W, called the accessibility relation. If
— (w1, d,ws), then we say that wy is d-reachable from w; and write

d
wyp — wa.

We require the monotonicity condition to be satisfied in all frames:!

If wy 2, we then Dy, C D,y,.

The monotonicity condition corresponds to cumulative domains e.g.
(Wallen, 1990) and nested domains e.g. (Garson; 1984).

DEFINITION 5 (L-frame). We specialize the concept of frames to six different
classes:

K. All frames are K-frames.

D. If for all d and w there exists v’ such that w & v’ (i.e. the accessibility
relation is serial in its 1st and 3rd arguments) then the frame is a D-
frame. .

T. If w -2 w holds for all w and d (i.e. the accessibility relation is reflezive
in its 1st and 3rd arguments), then the frame is a T-frame.

! The monotonicity condition can be replaced by a weaker condition:
If w; % wy and d € w; then Dy, C D, .

The reason is that the first-order language cannot express properties of worlds d-reachable
from w, when d € D,,.
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K4. If, from w -4, w' and w' -% w" it follows that w —% w” for all d and
w,w’ ,w” € W, (i.e. the accessibility relation is transitive in its 1st and
3rd arguments) then it is a K4-frame.

D4. If the accessibility relation is both serial and transitive in its 1st and 3rd
arguments, then the frame is a D4-frame.

S4. If the accessibility relation is both reflexive and transitive in its 1st and
3rd arguments, then the frame is an S4-frame.

3.2. First-order modal structures

The first-order modal (Kripke) structures are introduced in the standard
way, except for the case of modal operators.

DEFINITION 6 (Structure for £). Let £ be one of K, D, T, K4, D4, S4. A
first-order modal structure for L, or simply L-structure over a domain D is
a tuple & = W, D, —, I,IF), where

1. (W,D,—) is a L-frame over D.

2. IF is a binary relation between worlds and atomic sentences in F(X~UD).
(Note that elements of D are treated as parameters in F(3~ UD).)

3. I, called the interpretation function, is a mapping that maps every con-
stant ¢ of ¥ to an element of D and every function symbol f of ¥ of arity
n to an n-place function on D. The corresponding element of D and func-
tion on D are called the interpretations of ¢c and f respectively. We require
the interpretation of any constant and function symbol to be totally de-
fined in every world: this means that I(c) belongs to D,, for every world
w € W and for every d,...,d, € Dy, we have I(f)(dy,...,d,) € Dy.

Note that I is only defined on formulas without function symbols or
constants, but with parameters in D. *

We call a valuation V in a structure & any mapping V : P — D from a
set of parameters to the domain D of &. Any valuation V can be extended
to the set of all ground terms by defining

Vie) = I(c); .
V(f(tr,-.stn)) = I(HV (), ..., V(tn))-

Now we can give the central notion of satisfiability of formulas in struc-
tures.
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Given a first-order modal structure (W, D, —, I,IF), we change the rela-
tion I into a ternary relation between worlds in W, valuations, and sentences
in F(X UD) as given below. We write &, w, V | A when this relation holds
on w, V, A and denote by ¥ the complement of I-. When we use this notation,
we can omit one or both of &,V , when they are clear from the context.

DEFINITION 7 (Relation IF). Given & and V, we define the relation I as
follows.

L. w,VIF R(t1,...,tn) if wlk R(V(t1),...,V(tn))-
w,VIFAANBifw,VIFAand w,V IFB.
w,VIFAVBifw,VIFAorwVI-B.
w,VIFADBifw, V¥ AorwVIFB.

ool W

w,VIF-Aif w,V ¥ A

6. w,V I [t]A if for all w’ such that w Y® o we have W',V IF A.

7. w,V |- (t)A if there exists w’ such that w Y o and W,V IF A.

8. w,VIFVzA(z) if w,V I+ A(d), for all d € D,,.
9. w,VIFJzA(z) if w,V I+ A(d), for some d € D,,.

DEFINITION 8 (Truth, satisfiability). Let & = W, D, —, I,IF) be a struc-
ture. We say a formula A is true, or holds, or is locally satisfied in & at a
world w € W under a valuation V if G,w,V IF A. A formula A is globally
satisfied in a structure & under a valuation V if it is locally satisfied at ev-
ery world of & under V. A formula A is called locally (respectively, globally)
satisfiable in & if it is locally (respectively, globally) satisfied in & under
some valuation. If A is locally satisfiable in & we also say that & is a model
of A.

Note that the truth of a formula A under a valuation V only depends on
the value of V' on the parameters occurring in A. Thus, if A is a sentence in
F (%), its truth does not depend on the valuation at all.

DEFINITION 9 (Model, validity). Let £ be one of K, D, T, K4, D4, S4.
We call a model (W, D,—,I,IF) of a formula A an L-model if its frame
(W, D,—) is an L-frame. A formula A is called L-satisfiable if it has an
L-model. A formula A is called L-valid if it is true in every world of every
L-structure under every valuation.
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B>C = -BvVvC(C VB = dr-B
--B = B -JzB = Vz-B
-(BvC) = -BA-C -[t|B = (t)-B
~(BAC) = -BV-C -{{)B = [t]-B

Figure 1. Negation normal form transformation

It is not hard to argue that satisfiability and validity are dual notions in the
following sense: a formula A is unsatisfiable if and only if —A is valid. In view
of this duality we will formulate our results in terms of (un)satisfiability only.

When we speak of a logic £ in this article, we understand the set of
L-valid formulas. So, we will speak of logics K, D, T, K4, D4, S4. Another
standard way of introducing a logic is to define a suitable calculus deriving
valid formulas in this logic. In the next section we introduce such calculi for
all these logics.

Formulas A and B are called L-equivalent if the formulas A > B and
B D A are L-valid. It is evident that in any context when we speak about
worlds, structures, valuations, and satisfiability, we can replace formulas
by equivalent ones. We will now introduce the negation normal form of
formulas, which will simplify our proofs considerably.

DEFINITION 10 (Negation normal form). A formula A is said to be in nega-
tion normal form if it is constructed from literals using A, V, V, 3, [t] and
(t). A formula B is called a negation normal form of a formula A, if B is in
negation normal form and B is equivalent to A.

LEMMA 11. Every formula A has negation normal form.

PROOF. It is not hard to argue that one can reduce A to its negation normal
form by means of the transformations shown in Figure 1. These transfor-
mations replace, in any order, subformulas of A on the left of = by the
corresponding subformulas on the right, until no transformation is applica-
ble. . [

4. Sequent calculi

In this section we define sequent calculi for the family of term-modal logics.
There are several essentially equivalent notions of sequent giving rise to
different calculi. The original definition of Gentzen (1934) defines sequents
as expressions Ai,...,A, — Bi,...,B,,, where A,, ..., A,, B1,...,Bn,
are formulas. Smullyan (1963) represents such a sequent as a collection of
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formulas A4,...,A,, °B1,...,-B,, or a collection T' A4, ..., T A,, F Bi,
..., F By, of signed formulas with the intended meaning that all formulas
A; are true and all formulas B; are false and introduces a uniform notation
to group together inference rules with similar behavior. We will use the
approach due to Schiitte (1960). Instead of using arbitrary formulas we
will use only formulas in negation normal form. Every rule in the uniform
notation corresponds to an inference rule introducing a particular connective
on formulas in negation normal form. Then we do not need the unifying
notation anymore, since we can label inference rules by the corresponding
connectives. We will use parameters instead of free variables, and therefore
only deal with sentences.

DEFINITION 12 (Sequent). A sequent is a set of sentences. Let S be a
sequent and & be a structure. We say that a sequent S is locally satisfied
in & at a world w € W under a valuation V if S,w,V IF Aforall A€ S.
A sequent S is globally satisfied in a structure & under a valuation V if S is
locally satisfied at every world of G under V. A sequent S is called locally
(respectively, globally) satisfiable in & if it is locally (respectively, globally)
satisfied in & under some valuation. If S is locally satisfiable in & we also
say that & is a model of S.

Thus, a sequent is understood as a (possibly infinite) conjunction of its
members.

For a formula A and a set of formulas S we use 4, S or S, A to denote the
set SU{A}. Likewise, we write Sy, S to denote the union of two sequents
S1 U Ss.

Sequent calculi for logics K, D, T, K4, D4, S4 are shown in Figure 2.
St is a generalization of the notation used in (Fitting, 1983). Semantically,
S denotes the set of formulas which must hold in every world that is V (¢)-
reachable from the world in which S holds. Depending on the logic, semantic
restrictions on the frame make the definition of S vary between logics.

In the rule (ax), A is atomic. We can generalize the calculus for non-
atomic axioms in the standard way, but the calculus is complete with atomic
axioms.

DEFINITION 13 (Inference, derivation, refutation). The inference rules of
the sequent calculi are shown in Figure 2. We call an inference any particular
instance of an inference rule. The premises of any inference or inference
rule are the sequents above the bar, its conclusion is the sequent below the
bar. An aziom is any conclusion of (ax). A derivation of a sequent S is a
tree made of inferences and having S as the root. A derivation is called a
refutation if all leaves in it are axioms.
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For all logics (K, D, T, K4, D4,54):

SA-A )
SA 8B . SAB
S,AV B (v) S,A/\B( )
S, A(p) . S,VrA(z), A(t)
S, Iz A(x) 3) S, VrA(x) @)
st A
S ()
For serial logics (D, D4): For reflexive logics (T, 54):
Sltl S, A
——S— ([t]) S, [t]A ([t])
Logic £ Definition of S!*!

K,D, T[S ={A]|[t]Ac S}
Ka,Da | Sl ={A|[t)Ae SYU{[t]A|[t]A € S}
S4 St = {[t]A | [t)A € S}

* The rule (3) satisfies the parameter condition: p is a parameter having no occur-
rences in the conclusion of the rule. -

Figure 2. Sequent calculi

We use the term refutation instead of a proof because the sequent calculi
used in this article establish unsatisfiability rather than validity.
EXAMPLE 14. Suppose that we wish to establish K-validity of the sentence
Vz([2]VzR(z) D Vy[z]R(y)).
We turn this formula into its negation
—Vz([z]VzR(z) D Vy[z] R(y))

and establish the unsatisfiability of the latter. To this end, we transform
this formula into its negation normal form

F2([2]VzR(x) A Jy(z)-R(y))



Term-Modal Logics 145

and try to find a refutation in the sequent calculus for K. An example
refutation is as follows.

R R ﬂR< ) Ea’)‘)
[p]Vwa,<> 0 "
plvaR(z), 3y (p)~R(y)

PVaR(@) A Ty(p)=R(y)
32([2VeR(@) A Iy(2-R())

A)
€)

This refutation is also a valid refutation in D and T.
To obtain a refutation in K4 and D4, we have to modify the top part of
this refutation because of the difference in the definition of S(tl:

(ax)
(V)
((p))

[p}ViER(.’IJ), V:CR('T) ) R(Q) ) _'R(q)
[plVzR(x),VzR(x), - R(q)
[p]VzR(z), (p)—~R(q)

A refutation in S4 follows a different strategy because of the difference in
the ([t]) rule:

VeR(z), R(), ()ﬁ@’)‘)
voR(@), 2R9) )
YRt R 1)

[pIVzR(z), (p)~R(q)

Since every formula has a negation normal form, we can restrict ourselves
to negation normal forms. Moreover, using the fact that a formula and its
negation normal form obtained by the transformation of Figure 1 have, in
a sense, similar structure, it is not hard to change sequent calculi intro-
duced below for formulas in negation normal forms, into calculi for arbitrary
formulas or signed formulas. .

We will augment the logics defined above with so-called global assump-
tions. Let ¥ be a set of sentences and L be one of the logics defined above.
We call a sequent calculus for £ with global assumptions ¥ the calculus ob-
tained from £ by adding the rule

S A (¥), where A € WU.
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5. Tableau systems

Tableau systems formalize proof-search in sequent calculi. Tableaux are
often introduced as trees of formulas, with inference rules on tableaux for-
mulated in terms of branches. To simplify the presentation, we introduce
tableaux as multisets of branches.

DEFINITION 15 (Tableau, branch, empty branch). A tableau is a finite mul-
tiset S1,...,S, of sequents, denoted Sy | --- | Sp. The empty tableau is
denoted by #. Every sequent S; is called a branch of this tableau.

The tableau calculus for each logic studied in this paper can be obtained
by a simple transformation of the corresponding sequent calculus. For every
inference rule

Sy - S,

S
of the sequent calculus, the corresponding tableau rule has the form

S|T
Si|- | S| T

where 7 is any tableau. Note the reverse order of the sequents. The tableau
calculus rules have the following intuitive meaning: suppose that we search
for a refutation of S and all sequents in 7. Then, since there is a sequent
calculus rule reducing S to the sequents Si,..., Sy, it is enough to find a
refutation of Si,...,S5, and all sequents in 7. To find a refutation for a
formula A, we begin with a tableau consisting of one branch A and try to
apply the tableau rules until no (unrefuted) branches remain.

Formally, the tableau calculi for £ are shown in Figure 3.

THEOREM 16 (Equivalence of tableau calculi and sequent calculi).

A sequent S has a refutation in the sequent calculus for L (with global as-
sumptions V) if and only if there exists a derivation of # from S in the
tableau calculus for L (with the global assumptions V).

6. Soundness

The aim of this section is to prove soundness of the introduced sequent
calculi. Soundness of the tableau calculi will immediately follow by Theo-
rem 16.

THEOREM 17 (Soundness of sequent calculi). If a sequent has a refutation
in the sequent calculus for L, then it is L-unsatisfiable.
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For all logics (K, D, T, K4, D4, S4):

S,A,-A|T
ik LAy
S,AVB|T
S,A|SB|T
S,3zA(z) | T
S,Alp) | T

S,AANB|T
S,A,B|T

S,\VzA(z) | T

S, Ve A(z), A(t) | T

4 Al

Ely |

S(A|T

t
sz 10
For serial logics (D, D4): For reflexive logics (T, S4):

ST S,[HA|T

For systems with global assumptions ¥:

S|T

sar7 Y

Here Sl is defined in the same way as for the sequent calculi.

* The rule |3| satisfies the parameter condition: p is a parameter having no occur-
rences in the premise of the rule. In the rule |¥|, A € ¥.

Figure 3. Tableau calculi

PROOF. The proof is by induction on the number of inferences in the refu-
tation. The smallest refutations are simply the axioms S, A, —A. Evidently,
this sequent has no model. Take any longer refutation and consider the
bottom inference of this refutation

Sy - S,
. 1
S o

If we prove that any L£-model of S is also a £-model for some S;, then we
are done, since all S; have shorter refutations than S and by the induction
hypothesis cannot have £-models.

So we now assume that & is a £-model of S and prove that it is also a
model of some S;. The proof is by the case analysis on the inference rule used
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in inference (1). The proof is standard for most cases, so we only consider
two rules ([t]) and ((t)). In the proof, let [t]S denote the set {[t]A | A € S}.

CAsSE: rule ((t)) for logics K, D and T. The rule has the form

Sy, A
55 05, A ()

for some S1,S2. We assume that there exist a structure & and valuation
V under which for some world w we have w I+ S, [t]S2, (t)A and show that

the sequent Sy, A is satisfiable in &. Since w I+ (t) A, there exists a world w'

such that w “2 o and o' IF A. By w Ik [t]S2 and w Y ' we also have

w' IF Sy, and therefore w' I Sy, A.

CaAsg: rule ([t]) for logic D4. The rule has the form

Sa, [t]S2
Sla [t]SQ

()

We assume that there exist a D4-structure &, world w and valuation V
such that under & and V we have w I Sy, [t]S2 and show that the sequent
Sa, [t]S2 is satisfiable in &.

V(t)

Since & is a D4-structure, there exists a world w’ such that w — w’. By
\%
w Ik [t]S2 and w Y o we have w' I Sa.
1%
Consider any world w” such that w’ Y@ Since & is a D4-structure,
1%
w Y8 W, This together with w I [t]Sy gives us w” I+ Sy. Since w” was
arbitrary world satisfying w’ V& , w I [t]Se. Thus, w' |- S, [t]Ss. ]

7. Model existence

Now our aim is to prove completeness of the sequent calculi.

THEOREM 18 (Completeness of sequent calculi). Let S be a set of sentences.
If S has no refutation in the sequent calculus for L with the global assump-
tions U, then there exists an L-structure & and a valuation V under which
S is locally satisfied and all formulas in ¥ are globally satisfied.

We will build a £-model for a sequent with no refutation using the con-
struction of Fitting (1983). The construction is roughly as follows. First
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we define an abstract property capturing the syntactic counterpart of satis-
fiability, called the consistency property. Then we show that the family of
non-refutable sets of formulas is such a consistency property. The complete-
ness is finally proved by showing that each set of formulas in this consistency
property must be satisfiable. This means that every non-refutable sequent
has a model. We will also establish a stronger form of completeness for cal-
culi with global assumptions ¥: in the constructed £-model all formulas in
¥ will be satisfied globally, i.e. in every world. Our construction differs from
that of Fitting (1983) in several respects. First, the new modal operators
require a special treatment. Second, our logic has function symbols which
were not treated in (Fitting, 1983). Third, we simplified the construction of
Fitting (1983) in several respects.

We will use the fact that valuations do not change in different worlds,
and prove the existence of a special kind of model: a structure in which (i)
the domain consists of all ground terms in 7(X U P), where P is a set of
parameters, and (ii) each term is evaluated to itself. We call such structures
Herbrand structures.

DEFINITION 19 (Herbrand structure). Let & = (W, D, —, I,I) be a struc-
ture over a domain D of a signature . Then & is called a Herbrand structure
if (i) D is the set of ground terms of 7 (XU P) for some set of parameters P
and (ii) for the interpretation function I the following holds

1. for every constant ¢, I(c) = ¢;

2. for every function symbol f and terms ti,...,t,, I(f)(t1,...,tn) =
[, tn);

Note the following two properties of Herbrand structures.

1. The requirement on functions to be totally defined in a world has a con-
sequence on the structure of the worlds for Herbrand structures: if the
domain D,, of a world w contains parameters p1, ..., pn, it also contains
all terms built using the function symbols of ¥ and parameters py, ..., Pn.

2. If a valuation V in a Herbrand structure is the identity function on the
set of parameters, i.e. V(p) = p for all p, then also V(t) = t for every
ground term ¢t € T (X U P).

In the proof of the Model Existence Theorem below we will construct a
Herbrand structure.

In the proofs below we will assume that we have a set of parameters P,
which has the same cardinality as the set of closed formulas of ¥. If, for
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instance, the number of constants, function symbols and relation symbols
are all countable, then we also assume the set P to be countable.

DEFINITION 20 (Consistency property). A set of sequents C is called a (first-
order) L-consistency property if, for each S € C,

(A) S contains no atomic formula A and its negation —A.
(A) f ANB € S, then SU{A,B} € C.

(V) fAvBe S, then SU{A} e Cor SU{B} e C.
((t)) If (t)A € S, then S U {4} € C.

([t]) 1. For logics K and K4 no other conditions.
2. For T and S4, if [t]A € S, then SU {A} € C.
3. For D and D4, if S € C, then Sll € C.

(V) If VzA(z) € S, then SU {A(t)} € C for every ground term ¢.

(3) If 3zA(z) € S, then SU {A(t)} € C for some ground term ¢.

Let ¥ be a set of sentences of the signature 3. A consistency property
C is called ¥-compatible if

(¥) For every S € C and A € ¥ we have SU {A} € C.

We will simply say consistency property instead of L-consistency prop-
erty, when it causes no ambiguity. Note that we only speak of ¥-compatible
consistency properties when formulas in ¥ use no parameters. Also note
that the notion of consistency property depends on the signature and pa-
rameters used in formulas, because the (V)-condition requires a property to
be satisfied for every ground term. So if a set of sequents is a consistency
property in a language with parameters. P, it may violate the (V)-condition
considered in a language with more parameters.

The main theorem of this section is the following.

THEOREM 21 (Model existence). Let C be a ¥-compatible L-consistency
property and S € C be a set of sentences in the signature . Then there
exist a Herbrand structure & and a valuation V in & under which S s
locally and ¥ is globally satisfied.
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The proof will be given after a series of lemmas.

The first three lemmas (22, 25 and 27) are applied to the consistency
property to close it under subsets, add all parameter variants to it, and add
all sets constructed from finite subsets already in it. The three lemmas are
summarized as Proposition 28.

The first step in our attempt to build a model is to close the consistency
property under subsets.

LEMMA 22 (Subsets closure). Let C be a ¥-compatible L-consistency prop-
erty and C' consist of the subsets of all S € C. Then C' is also a V-
compatible L-consistency property and C' is closed under subsets.

PrOOF. We consider only one case, the other cases are similar.

(A) Suppose S’ € C" and AA B € §'. We have to show S’ U {4,B} € C'.
Since C’ consists of the subsets of sets in C, for some S € C we have
S’ C S. Then AAB € S, and by the (A)-condition on consistency
properties SU{A, B} € C. Evidently, S’U{A, B} C SU{A, B}, hence
S"U{A,B} e C. ]

Now, the conditions on consistency properties reflect both the definition
of truth of formulas in structures and the rules of the sequent calculi, but
with one exception. The (3)-condition is in the spirit of the definition of truth
(if 3z A(z) is true, then A(p) is true for some p). However, the corresponding
sequent calculus rule is

S, A(p) B
S, 3xA(z)

where p is a new parameter. We want to make the notion of consistency
property reflect this rule, so we will change the (3)-condition of consistency
properties.

DEFINITION 23 (Alternate L-consistency property). Let C be a set of se-
quents. We say that C meets the new parameter condition if for each S € C,
if IxA(z) € S, then SU {A(p)} € C for every parameter p that does not
occur in S. If C satisfies all conditions for a (¥-compatible) consistency
property except that the (3)-condition is replaced by the new parameter
condition, then C is called an alternate L-consistency property.

The condition that A(p) € S for every parameter p that does not occur
in S is not restrictive. Since p does not occur in S (and, being a parameter,
does not occur in ¥ either), there is from the viewpoint of S no difference
between p and any other new parameter.
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An alternate consistency property is not necessarily a consistency prop-
erty. S may already contain all parameters. We will overcome this problem
by an iterative construction of consistency properties, throwing more pa-
rameters into the language at every iteration step.

DEFINITION 24 (Parameter substitution, parameter variant). Any function
o: P — T(XUP) is called a parameter substitution. For a sentence A, o(A)
denotes the result of replacing every parameter in A by its image under o.
Similarly, o is extended to sets of sentences. The formula ¢(A) and the set
o(S) are called the parameter variants of A and S, respectively.

LEMMA 25 (Parameter variants extension). Suppose that C' is a ¥-com-
patible L-consistency property closed under subsets. Define C” by: S € C"
if 0(S) € C for some parameter substitution o. Then C" extends C' and
15 a W-compatible alternate L-consistency property closed under subsets.

PrROOF. We will only verify that C” satisfies the new parameter condition,
all other conditions are not difficult to prove.

Suppose S € C”, dzA(x) € S and p is a parameter that does not occur
in S. We have to show that SU {A(p)} € C".

Since S € C”, there is a parameter substitution o such that o(S) € C'.
Note that o(IxA(x)) € o(S). Denote o(A(z)) by B(x). Since C’ is a L-
consistency property and JzB(z) € o(S), there exists a term ¢ such that
o(S)U{B(t)} € C'. Define ¢’ to behave exactly as o except that o'(p) = t.
Using the fact that p does not occur in S, it is not hard to argue that
d'(SU{A(p)}) = o(S)U{B(t)}. Thus SU{A(p)} is a parameter variant of
a sequent in C’, and hence it is a member of C”. ]

Next, we would like the consistency property to satisfy the finite charac-
ter property defined below.

DEFINITION 26 (Finite character). A collection C of sets is said to be of
finite character if for every set S, S belongs to C if and only if each finite
subset of S belongs to C.

LEMMA 27 (Finite character extension). Suppose C” is a ¥-compatible alter-
nate L-consistency property closed under subsets. Let C"' consist of those
sequents S all whose finite subsets are in C"”. Then C" is again a ¥-
compatible alternate L-consistency property, which extends C” and is of fi-
nite character.

PRrROOF. As usual, we will only check some conditions on alternate consis-
tency properties.
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(V) Let S € C” and AV B € S. We have to prove that either SU {A} €
C"” or SU{B} € C". Suppose, by contradiction, S U {4} ¢ C"
and S U {B} ¢ C"”. By the definition of C", there are finite sets
Fy C SU{A} and F» C S U{B} such that Fy,F» ¢ C”. Consider
the finite set F' = (F} — {A}) U (F;, — {B}) U{AV B}. Then F is a
finite subset of S, hence F € C”. By the condition (V) on C”, either
FU{A} € C" or FU{B} € C". We show that in either case we obtain
a contradiction. Suppose F'U {4} € C” (the second case is similar).
It is not hard to argue that F; C F U {A}. Since C” is closed under
subsets, F; € C”. Contradiction.

(3) Let S € C” and Iz A(z) € S. We have to prove that for each pa-
rameter p not occurring in S we have S U {A(p)} € C"”. Suppose, by
contradiction S U {A(p)} ¢ C"”. By the definition of C"”, there is a
finite set F C S U {A(p)} such that F ¢ C"”. Consider the finite set
F' = (F — {A(p)}) U {3zA(z)}. Then F’ is a finite subset of S, so
F’ € C”. Note that p does not occur in F’, then by the condition (3)
on C” we have F' U {A(p)} € C". Evidently, F C F' U {A(p)}. Since
C” is closed under subsets, F' € C”. Contradiction.

It is easy to see that C" is of finite character. ]
Let us summarize the results obtained so far:

PROPOSITION 28. Let C be a ¥-compatible L-consistency property. Then C
can be extended to a set C* that is a W-compatible alternate L-consistency
property of finite character.

Let us now state two lemmas about alternate consistency properties of fi-
nite character. Lemma 30 says that a restriction of an alternate consistency
property of finite character to certain sublanguages gives us an alternate
consistency property of finite character. It will be helpful when we need
to throw in new parameters in order to'satisfy the (3)-condition on consis-
tency properties. Lemma 33 asserts the existence of maximal elements in
sets of finite character, which will be uséd as possible worlds in the model
construction. '

DEFINITION 29 (Section). Let P be a set of parameters and C be a set of
sequents. By the P-section of C, denoted C|p, we mean

{S € C | each parameter occurring in S is a member of P}.
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The following lemma is straightforward.

LEMMA 30 (Section restriction). Suppose C is a V-compatible alternate L-
consistency property of finite character in the language with parameters P
and Py C P. Then the Py-section of C is a W-compatible alternate L-
consistency property of finite character in the language with parameters Py.

Note that this lemma does not hold when alternate consistency prop-
erties are replaced by consistency properties. Consider, e.g., that while
C = {{3zA(x)}, {3z A(z), A(p)}} is a consistency property, Cly is not.

The following lemma has a straightforward proof by transfinite induction
on ordinals.

LEMMA 31. Let C be a collection of sets of finite character. Then
1. Each member of C is contained in a mazximal member;
2. The union of any chain of members is a member.

Now we give a definition closely related to witness formulas A(p) for
VxA(x), and then proceed to the proof of Model Existence Theorem 21.

DEFINITION 32 (Downward saturated set). Suppose C* is a W-compati-
ble alternate L-consistency property of finite character and P is a set of
parameters. Let S be a set of sentences in F(X U P). We say S is downward
saturated in C*[p if

1. S is maximal in the alternate L-consistency property C*|p.

2. If 3zA(z) € S, then A(p) € S for some p € P.

LEMMA 33 (3-completion). Suppose C* is a V-compatible alternate L-con-
sistency property of finite character in the language with parameters Py,
where Py has the same cardinality as F{X). Suppose also that P,Q C Py are
disjoint sets of parameters of the same cardinality as F(X). If S € C*[p,
then S may be extended to a set that is downward saturated in C*[p -

PROOF. Since @ is infinite, it can be partitioned into countably many pair-
wise disjoint sets @1, (2, ..., all of the same cardinality as @ itself. Note
that the sets of 3-sentences in the sets F(X), F(X U P), F(XUPUQ), and
F(EUPUQLUQU---UQy) are all of the same cardinality as P.

Now, suppose S € C*[p. Then S € C*[p,. Well-order the members
of Q1 as qo, q1, - - -, qa, - - - and the I-sentences of S: IxAg(x), IzA;(z), ...,
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JzA.(z), ... in such a way that for every ordinal «, the set of parameters
occurring in A,(x) is a subset of {gg | 8 < a}.

Consider the set S U {A43(gg) | 8=0,1,...,0,...}. We claim it is a
member of C*[p g, Suppose the contrary, then there is the smallest ordinal
a such that S U {Ag(gg) | B < a} € C*[pyg, but SU{Ag(qs) | B a} &
C*|pug,- Note that g, does not occur in any member of S U {A4s(qp) |
B < a} € C*[pyg,- By Lemma 30, C*[p yq, is an alternate L-consistency
property, so by the (3)-condition of alternate consistency properties

SU{4(ap) | B < a} U {Aa(10)} € C'l g,

But this set is exactly S U {Ag(gg) | B < a}, so we have a contradiction.

We have proved that S U {A3(gs) | 3=0,1,...,0a,...} is a member of
C*lpug,- By Lemma 31, it can be extended to a maximal member ;. Now
S1 has a “witness parameter” q for every sentence 3z A(z) that uses only
parameters in P, i.e. such that A(q) € S;. However, our construction does
not imply that S; contains a witness for 3-formulas containing parameters
in Ql.

To overcome this problem, we iterate the construction again, this time
using S; instead of S and Q9 instead of ;. Further iterations gives us a
sequence of sets S C §; C Sy C -+, such that

(2) each S, is maximal in C*[pyg,u..uQ,.
(3) if JxA(z) € S,, then for some q € Q.11 we have A(q) € Sp41-

Define S* = |J,, Sn. By Lemma 31, C* is closed under chains, so $* € C*.
Note that all parameters occurring in S§* are in @, thus S* € C*[p,g. We
claim that S§* is a maximal member of C*[p . This amounts to showing
that for every sentence B € F(X U PUQ), if S* U {B} € C*[p g, we have
B € §*. Since B can contain only a finite number of parameters, then
Be F(EUPUQLU---UQy,) for some n. Since SU{B} € C*[p, which
is of finite character, hence closed under subsets, S, U {B} € C*[p g. It
follows that S, U{B} € C*[p_g,u..u@,, hence by maximality of S, we have
B € S, and since S,, C $* also B € §*. -

Using (3), one may show that if 3zA(z) € S*, then A(q) € S* for some
q € Q. Thus S is downward saturated in C*[p - [ ]

Now we are ready to prove the Model Existence Theorem.

PROOF OF THEOREM 21. Recall that we, given a W-compatible L-consis-
tency property C and a set of sentences S € C in the signature 3, are going
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to build a Herbrand structure G and a valuation V in & under which S is
locally and ¥ is globally satisfied.

Using Proposition 28 extend C to an alternate L-consistency property
C* that is also ¥-compatible. We take a set P of parameters of the same
cardinality as F(X) and split it in countably many mutually disjoint sets
Py, Py, ..., each of them of the same cardinality as P itself. We will define
our structure & = (W, D, —, I,IF) over a domain D as follows.

The domain D is the set of all ground terms of ¥ with parameters in
P. We put a set S in W if § is downward saturated in C*[p .. p, for
some n. The domain of any such world S is the subset of D consisting of
terms with parameters in P, U--- U P,. Since we want S to be a Herbrand
structure, we define the interpretation function I as in Definition 19. Now
we define the valuation V as the identity mapping. By our remarks after the
definition of Herbrand structures we have V (t) = ¢ for every ground term ¢
of the signature ¥ U P.

Define the reachability relation — on W as follows: S L, g if Sl cy
and Dg C Dg.

Now we define the relation I- on & as follows. For any atomic sentence A
we let SIF Aif A € S. Thus, the structure & and valuation V are defined.
We prove the following:

(4) & is a L-structure.
First, we note the following useful facts:
(5)  For any choice of logic £, if S; C Sy, then S [t g,
(6)  For S4 we have Sltl = Sl 1 and 514 cSs.
(7)  For K4 and D4 we have Sl C S ]

Now we verify (4) for each particular logic L.

CAseE: L =K. There is nothing to verify since every structure is a K-
structure.

CAsE: L£=T. We have to prove S —— S, i.e. Sl C S. Take any A € S¥,
then [t]A € S. Since C* is an alternate T-consistency property, SU{A} € C*.
But S is maximal in a section of C* containing all parameters in A, hence
A€ S. Since A was arbitrary, Sl} C S.

The condition on the domains Dg C Dg is obvious. This condition will be
obvious for all other cases, so we do not verify it anymore.
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CAsE: £=D. Suppose S € W, we have to find S’ € W such that S ——
S’ ie. S C S Since C* is an alternate D-consistency property, Sltl € C*.
Take S’ to be a maximal member extending S in any language containing
all parameters in S, then Sl C §'.

CASE: L = Ka4. Suppose Sl C S, and Sl € S3. We have to prove
5111 C S5. By (5) above, S;! & C S,ll. Then by (7) above, §;1 C Syt
this and Sz[t] C S3 implies 51 [t C S;.

CASE: L = D4. Seriality is proved by the same argument as for D above
and transitivity by the same argument as for K4.

CASE: L = S4. Showing reflexivity reduces to S/ C S, which follows from
(6) above. Transitivity is proved by the same argument as for K4.

We proved (4), i.e. that & is a L-structure. Next, we prove the following.
(8) Let A be a sentence and S € C*. If A € S, then S I+ A.

The proof is by induction on the structure of A. We take any § € C*.
Suppose S is downward saturated in C*[p .. p, and A € S.

CASE: A is atomic. Then S | A by the definition of I+ in &.

CASE: A is a negative literal ~B. By definition of consistency property
we have B ¢ S. Then by the definition of I in & we have S ¥ B, and
hence S I A. ‘

CASE: Ais A; A Ay. By the definition of consistency property we have
SU{A1, Az} € C*. Since S is maximal, this implies 41, A5 € S. By the
induction hypothesis, S I+ A; and S |- Ay, hence S I+ A1 A As.

CAsSE: Ais A; V Ay. By the definition of consistency property, either SU
{A1} € C* or SU {42} € C*. Since S is maximal, this implies that either
Ay € S or A; € S. By the induction hypothesis, either S |- A; or S IF As,
hence S I+ A; V A,.

Case: AisVzB(z). By Lemma 30, C*[p, .. p, is an alternate consis-
tency property in the signature > U P U --- U P,. Then for every term
teT(XUPLU---UP,) we have SU{B(t)} € C*[p ..up,- By maximality,
S contains all formulas B(t). By the induction hypothesis S I+ B(t) for all
such t. But 7(X U P, U---U P,) is the domain of S, hence S I VzB(x).

CAseE: Ais JzB(z). Since S is downward saturated, S contains B(t) for
some t € T(XU P, U---UP,), therefore S I B(t). But t belongs to the
domain of S, hence S I+ 3zB(z).
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Casg: Ais (t)B. For every choice of logic £ we have Sl U {B} € C*.
Take any downward saturated S’ in a signature containing XU Py U---U P,
such that SMU{B}. By our construction we have S -1, §'. By the induction
hypothesis S’ I+ B, hence S I (t)B.

CasE: Ais [t]B. We take any S’ such that S C §’ and S’ contains all
parameters in S and claim B € ', then by the induction hypothesis S’ IF B.
Consider two cases.

SUBCASE: L =S4. By the definition of S for S4, if [t|B € S, then
[t|B € S, hence [t]B € S'. By the definition of consistency property for
S4, since [t|B € S', then S" U {B} € C*. Since S’ is maximal, B € §'.

SUBCASE: L is any other logic. By the definition of S for £, if [t|B €
S, then B € Sl hence B € §'.

So (8) is proved. We return to the proof of the Model Existence Theorem.
Recall that we intend to prove that under & and V all formulas occurring
in any member of C are locally satisfied and all formulas in ¥ are globally
satisfied.

1. Take any A € S € C. Extend S to a downward saturated S’ € C*
(Proposition 28 and Lemma 33). Then S’ is a world in & and A € S'.
By (8), A is satisfied in this world.

2. Take any A € ¥ and S € W. Let S be downward saturated in
C*lp,u..up,- By Lemma 30, C*[p .. p, is a W-compatible alternate
L-consistency property, hence S U {A} € C*[p..up,- Since S is maxi-
mal, A € S. By (8), A is satisfied in the world S. Since S was arbitrary,
A is satisfied in every world of &.

The proof of the Model Existence Theorem is completed. a

8. Completeness

The Completeness Theorem 18 can now be proved using the Model Existence
Theorem 21 in a rather straightforward ‘way.

PROOF OF THEOREM 18. Take an infinite set of parameters P and consider
the following set C of sequents of the signature X: we put S in C if S uses
only a finite number of parameters and S has no refutation in £ with global
assumptions ¥. We claim

(9) Cis a ¥-compatible L-consistency property.



Term-Modal Logics 159

We consider only some conditions of L-consistency property, others are
rather straightforward. Take any S € C.

(A) We prove: S contains no atomic formula A and its negation —=A. In-
deed, if S contains A and —A, it is an axiom of £, hence has a refuta-
tion.

(A) We prove: if ANB € S, then SU{A,B} € C. Suppose AAB € S.

Consider the inference
S,A, B

54anB ")
If SuU {A, B} had a refutation, so would S U {AA B} = S, hence

S U {A, B} has no refutation. By the definition of C, we have S U
{A,B} e C.

((t)) We prove: if (t)A € S, then Sl U {A} € C. Suppose ()4 € S.
Consider the inference
St A

If SMU{A} had a refutation, so would SU{(t)A} = S, hence SH1U{A}
has no refutation. By the definition of C, we have Sl U {A} € C.

(3) We prove: if 3zA(x) € S, then SU {A(t)} € C for some ground term
t. Suppose 3zA(z) € S. Consider the inference

S, A(p)
S, 3rA(x) 3)-

If SU{A(p)} had a refutation, so would S U {3zA(z)} = S, hence
SU{A(p)} has no refutation. By the definition of C, since we have an
infinite number of parameters and S uses only a finite number of them,
we can always choose a new parameter p so that SU {A(p)} € C.

(V) We prove: if S € C and A € ¥, then SU{A} € C. Suppose S € C
and A € U. Consider the inference

S, A

S

If SU{A} had a refutation, so would S, hence SU{ A} has no refutation.
By the definition of C, we have SU {4} € C.

Now take S that has no refutation. By our construction, S € C. By Model
Existence Theorem 21 there exists a L-structure and valuation V in it under
which S is locally satisfied and every formula A € ¥ globally satisfied. m

(©).
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9. Free-variable tableaux

In this section we change the tableau systems introduced in Section 5 into
free-variable tableau systems. We will use the definitions introduced so far,
except that we now allow free variables to occur in sequents, and hence in
tableaux as well.

To avoid problems with the parameter condition in the (V)-rules, we in-
troduce so-called occurrence constraints similar to those used in (Voronkov,
1996). Note that we could use the “dynamic skolemization” technique in-
troduced in (Fitting, 1988) as well.

In this section we assume knowledge of the standard notions of substi-
tutions and (idempotent, most general) unifiers see, e.g., (Eder, 1985). The
application of a substitution o to a term or formula F is denoted Eo. As
usual, we may need to rename bound variables in a formula before we apply
a substitution to it. Any idempotent most general unifier of n expressions
Es,...,E, is denoted by mgu(F,..., E,). The set of free variables of any
expression E (e.g. formula or set of formulas) is denoted by vars(E).

DEFINITION 34 (Occurrence constraint). A simple occurrence constraint is
either L or an expression p € X, where p is a parameter and X is a finite set
of variables. An occurrence constraint is a conjunction of zero or more simple
occurrence constraints. A conjunction of zero simple occurrence constraints
is denoted by T.

For any substitution ¢ and simple occurrence constraint C = (p ¢ X),
we denote by Co the following simple occurrence constraint:

Co — 1, if p occurs in Xo;
“ | p&wars(Xo), otherwise.

When C is a conjunction C; A --- A Cp, of simple occurrence constraints, we
denote by Co the following occurrence constraint:

-

Co— 4, if C; = L for some 1;
) CicA---ACpo, -otherwise.

An occurrence constraint C is called satisfiable if C is not L. A solution
to an occurrence constraint C is any substitution o such that Co # L and
zo is ground for every variable x occurring in C. Evidently, an occurrence
constraint C is satisfiable if and only if it has a solution: indeed, one can take
as a solution any substitution mapping all variables of C into any ground
term not containing parameters in C.
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For all logics (K, D, T, K4, D4, 54):
S, A(8),~A®) | T -C

Tmgu(s,t) - Cmgu(s, ) fax
S,AVB|T-C vl S,A/\B|’T-C|/'\|
S,A|S8B|T-C S,A,B|T-C
S,3zA(z) | T -C Er S,\VzA(z) |T-C e
S,A(p) | T -C Ap & vars(S, Iz A(x)) S,VxA(z), Aly) | T -C
S,(HVA|T-C
tt, .. t)]*
Sl . 8l A | To-Co 5 )
For serial logics (D, D4): For reflexive logics (T, S4):
S|T-C S,[A|T-C
t, .t AN el g
sl .. Stel | To - Co e I S,A|T-C el

For logics with global assumptions W:

S|T-¢

sajr.c !V

* In the rule |(t,t1,...,tn)|, 0 = mgu(t,t1,...,t,). In the rule |[t,...,t,]], o =
mgu(ti,...,ts). In the rule |3, p is new parameter, not occurring in the premise.

In the rule |V|, y is a new variable, not occurring in the premise. In the rule |¥|,
A€V,

Figure 4. Free-variable tableau with constraints calculi

We call a constrained tableau any pair consisting of a tableau 7 and
constraint C, denoted 7 - C. Let £ be one of the logics K,D, T, K4, D4 and
S4. The free-variable tableau calculi for £ are shown in Figure 4.

We claim

THEOREM 35 (Equivalence of free-variable and sequent calculi). Let S be
a set of sentences of the signature ¥. Then S has a refutation in the se-
quent calculus for L (with global assumptions V) if and only if there exists
a derivation of #-C from ST in the tableau calculus for £ (with the global
assumptions V) such that C 1is satisfiable.

In order to prove this theorem, we will prove two results showing bisim-
ulation between tableau derivations and free-variable tableau derivations.
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Let 7 - C be a constrained tableau and ¢ be a substitution. We call the
tableau 7 ¢ the o-instance of T -C if Co is satisfiable. A tableau 77 is called
an instance of 7 - C if it is a o-instance of 7 - C for some o.

The following lemma establishes a simulation of free-variable tableau
derivations by tableau derivations.

LEMMA 36. Suppose there exists a derivation of T - C from Ty - T in the
free-variable tableau calculus for L with global assumptions ¥. Then any
instance of T - C has a derivation from Ty in the tableau calculus for L with
the global assumptions V.

PrOOF. The proof is by induction on the length of derivations in the free-
variable tableau calculus. When the derivation is of length 0, the claim is
obvious, since 7 is the only instance of 77 - T, when 77 has no free variables.
For derivations with at least one inference, consider the last inference of the
derivation. We will consider only two cases, other cases are similar.

CASE: the last inference is |ax]|.

S, A(38),-A®) | T -C
To-Co [ax],

where o = mgu(s, t).

Take any instance of 7o - Co, then this instance has the form 7 o7 for some
substitution 7 such that Cort is satisfiable. We have to prove that 7ot is
derivable from 7;.

We claim that the following is a valid inference in the tableau calculus:

(S, A(3),—-A(t) | T)or

Tor lax]|. (10)

Indeed, since ¢ is a unifier of 5 and ¢, then A(5)c = A(t)o, hence A(5)oT =
A(t)or.

Since CoT is satisfiable, we get that (S, A(3),—-A(t) | T)oT is a oT-instance
of S, A(8),—A(t) | T - C. By the induction hypothesis, this instance has a
derivation from 7;. Add to this derivation the inference (10), then we obtain
a required derivation of ToT.

CASE: the last inference is |3|.

S,3zA(z) | T-C :
S AW | T -CAp & vars(S, 3oA@)
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Take any instance of S, A(p) | 7-C Ap & vars(S, 3xA(z)), then this instance
has the form S7, A(p)T | T7 for some substitution 7 such that (C Ap ¢
vars(S,dzA(z)))r is satisfiable. We have to prove that S7, A(p)r | 77 is
derivable from 7;.

Since (C A p & wars(S,3zA(x)))7 is satisfiable, by defipition of constraint
satisfiability, C7 is satisfiable and p does not occur in S7,3zA(z)7r. Since
p does not occur in S7,3xA(z)7, the following is a valid inference in the
tableau calculus:
St,xA(z)r | TT
St,Alp)yt | Tt 13-

(11)

By the induction Mypothesis, every instance of S,3xA(z) | T -C has a deriva-
tion from 7;. Since C7 is satisfiable, we can take its 7-instance S7,3z A(z)T |
T 7, this instance has a derivation from 77. Add to this derivation inference
(11) and we obtain a required derivation of St, A(p)r | T from T;. ]

Now we want to prove a simulation result in the inverse direction. If we
defined a sequent as a multiset of formulas, we could use an argument similar
to the previous lemma. The use of sets instead of multisets causes some
technical problems because the notion of instance does not work properly any
more. To avoid these technical problems we give a definition of generalization
that is nearly inverse to the notion of instance but takes into account some
specific problems in the inverse simulation proof.

Let 7 =51 ---|Spand 7' =S} | --- | S}, be two tableaux. We write
T CTif (i) for every i =1 ... n we have'S; C S! and (ii) each parameter
occurring in some 77 also occurs in 7. Let 7 - C be a constrained tableau
and 7' a tableau. We call 7 - C a o-generalization of T’ if 7' C To and Co
is satisfiable. We call 7 -C a generalization of T' if T -C is a o-generalization
of 77 for some o.

LEMMA 37. Suppose there exists a derivation of Ty from Tq in the tableau
calculus for £ with global assumptions W. Then some generalization of To
has a derivation from T; - T in the free-variable tableau calculus for L with
the global assumptions V.

PROOF. The proof is by induction on the length of derivations in the tableau
calculus. When the derivation is of length 0, the claim is obvious, since 77 - T
is a generalization of 7;. For derivations with at least one inference, consider
the last inference of the derivation. We will consider only two cases, other
cases are similar.

.
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Case: the last inference is |ax]|.

S, A,~A|T
e

By the induction hypothesis, some o-generalization of S, A,—~A | T is deriv-
able from 7; - T. Then this generalization has a form §’, A’,—B’ | 7’ -C such
that A'c = A, B'o = A, T C T'c and Co is satisfiable. Then ¢ is a unifier
of A’ and B’, therefore, there exists a most general unifier 7 of A’ and B’
and a substitution ¢ such that 76 = o. Consider the following inference in
the free-variable tableau calculus.

S A, -B'|T-C
T'r-Cr faxc.

We claim that the conclusion of this inference is a generalization of 7, this
will complete the proof of this case. To prove the claim, we have to find a
substitution ¢’ such that (i) 7 C 7'7¢" and (ii) C7d’ is satisfiable. Well, take
' to be 6, then both (i) and (ii) follow from 76 = o.

CASE: the last inference is |3|.

S,3cA(z) | T

S A(p) | T ElN (12)

By the induction hypothesis, some o-generalization of S, 3z A(z) | 7 is deriv-
able from 7; - T. Then this generalization has form S’,3zA'(z) | 7’ - C such
that (i) S C S'o, (ii) every parameter occurring in (S’,3zA'(x))o also oc-
curs in S, 3z A(z) | 7, (iii) 3zA'(z)o = Iz A(z), (iv) T C T'o, and (v) Co is
satisfiable.

Consider the following inference in the free-variable tableau calculus.

S A A(z) | T -C
S A (p) | T'-CAp & vars(S',3xA'(x))

Elf

Let us check that the parameter condition is satisfied. Suppose, by contradic-
tion, that p occurs in S’,3zA’(z) | 7, then it also occurs in (S, 3zA'(z) |
T")o, hence also in S,3zA(z) | 7. This violates the parameter condition
of (12).

We claim that the conclusion of this inference is a generalization of S, A(p) |
7, this will complete the proof of this case. We actually claim that the
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conclusion is the o-generalization of S, A(p) | 7. All conditions on o-
generalization except for constraint satisfaction immediately follow from
(i)-(iv) above. It remains to verify that (C A p & wvars(S’,3zA'(z)))o is
satisfiable. Co is satisfiable by (v) above, so it remains to check that p does
not occur in (S',3zA'(z))o. If p occurred in (S’,3zA’'(z))o, then by (ii)
above p would also occur in S,3zA(z) | 7, but this is impossible because of
the parameter condition in (12). ]

Now we can prove soundness and completeness of the free-variable calculi.
PROOF OF THEOREM 35.

1. Suppose S has a refutation in the sequent calculus for £ with global
assumptions ¥. Then by Theorem 16 there exists a derivation of # from
S in the tableau calculus for £ with the global assumptions ¥. Hence,
by Lemma 37 there exists a derivation of some generalization of # from

S - T in the free-variable tableau calculus for £. But any generalization
of # has the form # - C for a satisfiable C.

2. Suppose there exists a derivation of # - C from S - T in the tableau cal-
culus for £ with the global assumptions ¥ such that C is satisfiable. By
Lemma 36 any instance of # - C has a derivation from S in the tableau
calculus for £ with the global assumptions ¥. Obviously, # is such an in-
stance, so it is derivable from S as well. By Theorem 16 S has a refutation
in the sequent calculus for £ with the global assumptions V. [ ]

10. Example refutation

Consider the following formula valid in term-modal K. (For better readabil-
ity, we will omit parenthesis in terms like f(x) and write fz instead.)

Vz3y([ylR(y,y) A [fyl(R(fy, fy) > R(y, fy)) O [fz]R(x, fz)).

We will establish the validity of this formula, i.e. unsatisfiability of its
negation using the free-variable tableau calculus for K. First, we negate the
formula and transform it into negation normal form:

vy ([ylR(y, y) A [fyl(—R(fy, fy) vV R(y, fy)) A (fz)-R(z, fz)),

and then show its refutation. The refutation is given in Figure 5. In the
refutation we do not show the constraint, since it always has the form p & §
and is satisfiable. For better readability, we denote the inference steps by —
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zvy([y]R(y, v) A [fy)(~R(fy, fy) V R(y, fy)) A (fz)—-R(z, fz)) — |3
Yy(ly)R(y,y) A [fyl(~R(fy, fy) V R(y, fy)) A (fp)~R(p, fp)) — |V|"

AL
Vy([y]R(y, y) A [fy](~R(fy, fy) vV R(y, fy)) A {fp)—R(p, fp)),
[2]R(z,2) A [f2](-R(fz, f2) V R(z, fz)) A (fp)—~R(p, fp),
[W]R(u, u) A [fu)(~R(fu, fu) V R(u, fu)) A {fp)-R(p, fp) = |A"

[V%g%]R%J, y) A [fyl(~R(fy, fy) Vv R(y, fy)) A {fp)~R(p, fp)),
z|R(z, z),

[fz](~R(fz, fz) V R(z, f2)),

(fp)-R(p, fp),

[u] R(u,u),

[fu](—lR(fu,fu)VR(u,fu)) - Kfpaz7fu>|

R(fp, fp),
_'R(pv fp)7
-R(fp,fp)V R(p, fp) = |V

R(fp, fp), ~R(p, fp), ~R(fp, fp) |
R(fp, fp),~R(p, fp), R(p, fp) — |ax|*

#

Figure 5. Example refutation in the free-variable calculus

followed by the name of the inference rule. We also group similar inferences
into one. For example, by |V|* we denote a sequence of |V| inferences, and
by |A|* a sequence of |A| inferences.

11. Conclusions

A complete sequent calculus was presented for a logic in which it is possible
to quantify over modalities. We note that even though we have restricted
ourselves to the logics K, D, T, K4, D4, and S4, other logics can be included
among the Term-Modal Logics.

Term-modal logic can be used to reason about epistemic multi-agent
systems or to develop action logics. Interesting future work includes joining
epistemic term-modal logic with dynamic logic for actions, e.g. knowledge
updates. :
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