Corrections to

Set Theory and the Continuum Problem (revised edition)

Raymond M. Smullyan Melvin Fitting

September 16, 2018

These are corrections to the edition published by Dover in 2010.

- **Page 23** (Error found by David Feuer) Exercise 5.5(d) in Chapter 2 asks the reader to show $B (A B) = \emptyset$. It should be to show B (A B) = B.
- **Page 23** (Error found by David Feuer) Text in §6 reads A_6 [Power aet axiom]. It should read A_6 [Power set axiom].
- **Page 25** (Error found by Gavin Rebeiro) On pg. 25 line 36 (5th line of last paragraph), "if $x \neq y$ then $F(x) \neq F(Y)$ " should be "... $F(x) \neq F(y)$ ".
- **Page 39** (Error found by Gavin Rebeiro) On pg. 36, last paragraph on page. "Let L be the class of all elements x such that x is a proper subclass of all elements of A" should be "Let L be the class of all elements x in M such that x is a proper subclass of all elements of A.
- **Page 51** (Error found by Grigory Olkhovikov) Exercise 1.2 is incorrect as asked. Take A to be the set of negative integers under the natural linear order \leq . Every proper lower section of A has a strict upper bound, but its ordering is not a well ordering. The exercise can be corrected by including the condition that A has a least element
- **Page 55** (Error found by Hal Prince) line 6: "every y in M" should be "every y in C".
- **Page 60** (Error found by Allen David Boozer) Exercise 4.3 should be deleted. There is a reference to this Exercise in the Remark at the top of page 63, and this reference should also be deleted.
- Page 66 (Error found by Stuart Newberger) Definition 7.1 is incorrect as stated. It should read as follows.

For any sets y and x, we will say that y is closed (under g) relative to x provided, for any $z \in y$, if $g(z) \in \mathcal{P}(x)$ then $g(z) \in y$. (Thus $(z \in y \land g(z) \subseteq x) \supset g(z) \in y$.)

Page 225-226 (Error found by Chang Soon Choi.) In the Remarks, it is not the case that $(f \approx_{\lambda} g) \supset [\![f \approx_{\lambda} g]\!]$ is S4 valid generally, but it is valid in the particular S4 models being constructed. Here is the argument. Suppose as an induction hypothesis that it is known for ordinals less than λ . It follows from the definition of \approx_{λ} that if $\alpha < \lambda$ then $(f \approx_{\alpha} g) \supset (f \approx_{\lambda} g)$ is valid in these models. It follows from this, using general S4 reasoning, that $\Box \Diamond (f \approx_{\alpha} g) \supset \Box \Diamond (f \approx_{\lambda} g)$ is also valid in these models, that is, $[\![f \approx_{\alpha} g]\!] \supset [\![f \approx_{\lambda} g]\!]$. Now if $p \Vdash (f \approx_{\lambda} g)$, then $p \Vdash (f \approx_{\alpha} g)$ for some $\alpha < \lambda$ (by definition). This implies $p \Vdash [\![f \approx_{\alpha} g]\!]$, and hence $p \Vdash [\![f \approx_{\lambda} g]\!]$.

Page 227 (Error found by Chang Soon Choi.) In the proof of Proposition 1.5, the limit ordinal case is incorrect. It uses an inference from $p \Vdash [\![f \approx_{\lambda} g]\!]$, where λ is a limit ordinal, to $p \Vdash [\![f \approx_{\alpha} g]\!]$, for some $\alpha < \lambda$, and this is not justified. Replace the limit ordinal case by the following.

Assume λ is a limit ordinal and every $\alpha < \lambda$ is good. Now suppose $p \Vdash \llbracket f \approx_{\lambda} g \rrbracket$ and $\lambda < \beta$; we must show $p \Vdash \llbracket f \approx_{\beta} g \rrbracket$.

We first show $(f \approx_{\lambda} g) \supset \llbracket f \approx_{\beta} g \rrbracket$ is valid in the model that has been constructed (note the absence of double square brackets in the antecedent). Well, suppose $q \Vdash (f \approx_{\lambda} g)$. Then $q \Vdash (f \approx_{\alpha} g)$ for some $\alpha < \lambda$, by definition of \approx_{λ} . It follows by the Remarks at the bottom of page 225 and the top of 226 that $q \Vdash \llbracket f \approx_{\alpha} g \rrbracket$. Since α is good, $q \Vdash \llbracket f \approx_{\beta} g \rrbracket$. Since qwas arbitrary, we have shown the validity of $(f \approx_{\lambda} g) \supset \llbracket f \approx_{\beta} g \rrbracket$ in the model.

It now follows, by standard modal manipulations, that $\Box \Diamond (f \approx_{\lambda} g) \supset \Box \Diamond \llbracket f \approx_{\beta} g \rrbracket$ is also valid in the model, and hence we have the validity of $\llbracket f \approx_{\lambda} g \rrbracket \supset \llbracket f \approx_{\beta} g \rrbracket$, making use of Proposition 4.3, part 2. Since $p \Vdash \llbracket f \approx_{\lambda} g \rrbracket$, then $p \Vdash \llbracket f \approx_{\beta} g \rrbracket$.

- **Page 228** (Found by Grigori Mints) In the Remark just before Definition 1.8 it is asserted that $(f \in g) \equiv [\![f \in g]\!]$. The equivalence is not correct, but $(f \in g) \supset [\![f \in g]\!]$ is.
- **Page 229** (Problem found by Chang Soon Choi.) Lemma 2.1 says that if $p \Vdash \llbracket f \approx_{\alpha} g \rrbracket$ and $p \Vdash \llbracket g \approx_{\alpha} h \rrbracket$ then $p \Vdash \llbracket f \approx_{\alpha} h \rrbracket$. The proof is by induction on α . It begins by saying the cases where α is 0 or a limit ordinal are simple. In fact 0 is simple, but the limit ordinal case is not. Here is a proof for the limit ordinal case.

Let λ be a limit ordinal and assume the result holds for smaller ordinals. We begin by showing that if $p \Vdash (f \approx_{\lambda} g)$ and $p \Vdash \llbracket g \approx_{\lambda} h \rrbracket$ then $p \Vdash \llbracket f \approx_{\lambda} h \rrbracket$ (note the difference in the first item). So, suppose $p \Vdash (f \approx_{\lambda} g)$ and $p \Vdash \llbracket g \approx_{\lambda} h \rrbracket$. To show $p \Vdash \llbracket f \approx_{\lambda} h \rrbracket$ we show $p \Vdash \Box \Diamond (f \approx_{\lambda} h)$. Let q be any member of \mathcal{G} such that $p\mathcal{R}q$; we must show there is some rwith $q\mathcal{R}r$ so that $r \Vdash (f \approx_{\lambda} h)$.

Since $p \Vdash \Box \Diamond (g \approx_{\lambda} h)$ then $q \Vdash \Diamond (g \approx_{\lambda} h)$ and hence there is some r with $q \mathcal{R}r$ so that $r \Vdash (g \approx_{\lambda} h)$. By definition, $r \Vdash (g \approx_{\alpha} h)$ for some $\alpha < \lambda$. Without loss of generality we can assume α is a successor ordinal. Then $r \Vdash [g \approx_{\alpha} h]$ by the remarks on pages 225-226.

Since $p \Vdash (f \approx_{\lambda} g)$ then $p \Vdash (f \approx_{\beta} g)$ for some $\beta < \lambda$ and again without loss of generality we can assume β is a successor ordinal. Then $p \Vdash \llbracket f \approx_{\beta} g \rrbracket$ by the remarks on pages 225-226 again. Since this formula begins with \Box , $r \Vdash \llbracket f \approx_{\beta} g \rrbracket$. Let γ be the larger of α and β . By Proposition 1.5, $r \Vdash \llbracket f \approx_{\gamma} g \rrbracket$ and $r \Vdash \llbracket g \approx_{\gamma} h \rrbracket$. Since $\gamma < \lambda$, by the induction hypothesis for the overall Lemma, $r \Vdash \llbracket f \approx_{\gamma} h \rrbracket$. Since γ is a successor ordinal, by the remarks on pages 225-226 again, $r \Vdash (f \approx_{\gamma} h)$, which is what we wanted.

Since p was arbitrary, we have shown the validity in our model of

$$(f \approx_{\lambda} g) \supset \left(\left[\! \left[g \approx_{\lambda} h \right] \! \right] \supset \left[\! \left[f \approx_{\lambda} h \right] \! \right] \right)$$

Then by standard S4 manipulations, this gives us the validity in our model of

$$\Box \Diamond (f \approx_{\lambda} g) \supset \Box \Diamond \left(\left[\left[g \approx_{\lambda} h \right] \right] \supset \left[\left[f \approx_{\lambda} h \right] \right] \right).$$

By Proposition 4.4 of Chapter 16 we then have

$$\Box \Diamond (f \approx_{\lambda} g) \supset \left[\! \left[g \approx_{\lambda} h \supset f \approx_{\lambda} h \right] \! \right]$$

and hence

$$\llbracket f \approx_{\lambda} g \rrbracket \supset \left(\llbracket g \approx_{\lambda} h \rrbracket \right) \supset \llbracket f \approx_{\lambda} h \rrbracket \right)$$

by using Proposition 4.5 of Chapter 16.

- **Page 234** (Problem found by Chang Soon Choi.) In line 8 of the proof of Proposition 3.3, "equivalently, $[\hat{s} \in \hat{t}]]$ " should be changed to "and so $[\hat{s} \in \hat{t}]]$ ". Also in line 11 of the same proof, "But then $p \Vdash (a \varepsilon \hat{t})$, so a is $\hat{x} \dots$ " should be changed to "So a is $\hat{x} \dots$ ".
- **Pages 239–240** (Problem found by Chang Soon Choi.) In the proof of Lemma 5.2 it is said that "(Recall that $(x \approx_{\alpha} y)$ and $[x \approx_{\alpha} y]$ are equivalent.)" This is not the case. One should modify the condition that we need to express by a first-order formula so that the last part reads $\Box \Diamond (x \approx_{\alpha} y)$. Then, in the formula following "Now let $F(\mathcal{A}, p, f, g)$ be the formula:" the final clause should be changed from " $\langle s', x, y \rangle \in \mathcal{A}$ " to " $\langle r', x, y \rangle \in \mathcal{A}$ ".
- **Page 241** (Problem found by Chang Soon Choi.) In the proof of Theorem 5.4, the atomic case should be modified. We know that $p \Vdash \llbracket f \in g \rrbracket$ iff $p \Vdash \llbracket (\exists w)(w \approx f \wedge w \varepsilon g) \rrbracket$ iff $p \Vdash \Box \Diamond (\exists w)(\llbracket w \approx f \rrbracket \wedge \llbracket w \varepsilon g \rrbracket)$, so in the atomic case, $F_{\varphi}(z, x, y)$ should be

$$(\forall z'\overleftarrow{\mathcal{R}}z)(\exists z''\overleftarrow{\mathcal{R}}z')(\exists w \in \mathcal{D})(\mathsf{Equals}(z'', w, x) \land (\forall z'''\overleftarrow{\mathcal{R}}z'')(\exists z''''\overleftarrow{\mathcal{R}}z''')\langle z'''', w\rangle \in y)$$

Also in the final part of the proof take $F_{\varphi}(z, x_1, \ldots, x_n)$ to be the following: $(\forall z' \overrightarrow{R} z)(\exists z'' \overrightarrow{R} z') \neg F_{\psi}(z'', x_1, \ldots, x_n).$

Page 264 (Problem found by Jason Parker) The remarks at the end of the first paragraph are incorrect. First, a few useful observations: using Definition 3.1 on page 233, one has the following.

$$\begin{split} \hat{0} &= \emptyset \\ \hat{1} &= \mathcal{G} \times \{\hat{0}\} \\ \hat{2} &= \mathcal{G} \times \{\hat{0}, \hat{1}\} \\ &= \hat{1} \cup (\mathcal{G} \times \{\hat{1}\}) \\ \hat{3} &= \mathcal{G} \times \{\hat{0}, \hat{1}, \hat{2}\} \\ &= \hat{2} \cup (\mathcal{G} \times \{\hat{2}\}) \\ \vdots \\ \hat{\omega} &= \mathcal{G} \times \{\hat{0}, \hat{1}, \hat{2}, \ldots\} \end{split}$$

Now, here is Parker's argument.

"It is claimed that we can show that if $p \Vdash [\![a \subseteq \hat{\omega}]\!]$, then for some $b \subseteq \mathcal{G} \times \hat{\omega}$, $p \Vdash [\![a \approx b]\!]$. But this would entail that $b \in \mathcal{D}^{\mathcal{G}}$, which does not seem possible. For suppose $b \subseteq \mathcal{G} \times \hat{\omega}$. If b were a member of $\mathcal{D}^{\mathcal{G}}$, then $b \in R_{\alpha+1}^{\mathcal{G}}$ for some least ordinal α . Then $b \subseteq \mathcal{G} \times R_{\alpha}^{\mathcal{G}}$. Now since $b \subseteq \mathcal{G} \times \hat{\omega}$, it follows that any $x \in b$ is of the form $\langle p, \langle q, \hat{n} \rangle \rangle$ for some $p, q \in \mathcal{G}$ and $n \in \omega$. So $\langle q, \hat{n} \rangle \in R_{\alpha}^{\mathcal{G}}$. So there is some least ordinal β such that $\langle q, \hat{n} \rangle \in R_{\beta+1}^{\mathcal{G}}$, whereby $\langle q, \hat{n} \rangle \subseteq \mathcal{G} \times R_{\beta}^{\mathcal{G}}$, which is clearly false. So it seems that it cannot be that $b \in \mathcal{D}^{\mathcal{G}}$ if $b \subseteq \mathcal{G} \times \hat{\omega}$."

The problem sentences at the end of paragraph 1, page 264, should be replaced with the following. "Now, this result can be improved, to establish that if $[a \subseteq \hat{\omega}]$ is true at p then

 $\llbracket a \approx b \rrbracket$ is true at p for some $b \subseteq \mathcal{G} \times \{ \hat{n} \mid n \in \omega \}$ (equivalently, for some $b \subseteq \hat{\omega}$). Consequently, to investigate the size of the power set of $\hat{\omega}$ in the modal model, we begin by investigating the actual power set of $\hat{\omega}$."

Here is the argument for the revised assertion above. Throughout, assume that $p \Vdash [\![a \subseteq \hat{\omega}]\!]$, meaning $p \Vdash [\![(\forall x)(x \in a \supset x \in \hat{\omega})]\!]$.

1. If $p\mathcal{R}p'$ and $p' \Vdash [x \in a]$, then for some p'' with $p'\mathcal{R}p''$, $p'' \Vdash [x \approx \hat{n} \land \hat{n} \in a]$ for some $n \in \omega$.

Proof: Suppose $p\mathcal{R}p'$, and $p' \Vdash [\![x \in a]\!]$. Then $p' \Vdash [\![x \in \hat{\omega}]\!]$, and so for some p'' with $p'\mathcal{R}p''$, $p'' \Vdash x \in \hat{\omega}$, and hence for some h, $p'' \Vdash [\![x \approx h]\!]$ and $p'' \Vdash [\![h \varepsilon \hat{\omega}]\!]$ (Definition 1.6 Chapter 17). Then for some p''' with $p''\mathcal{R}p'''$, $p''' \Vdash h \varepsilon \hat{\omega}$, and so $\langle p''', h \rangle \in \hat{\omega} = \mathcal{G} \times \{\hat{0}, \hat{1}, \ldots\}$. Then $h = \hat{n}$ for some $n \in \omega$. It follows that $p'' \Vdash [\![x \approx \hat{n}]\!]$ and $p'' \Vdash [\![\hat{n} \in a]\!]$.

- 2. Now let $b = \{ \langle q, \hat{n} \rangle \mid n \in \omega, q \Vdash [\![\hat{n} \in a]\!] \}$. Trivially $b \subseteq \mathcal{G} \times \{\hat{0}, \hat{1}, \ldots\} = \hat{\omega}$.
- 3. $p \Vdash [\![a \subseteq b]\!]$. The proof is by contradiction. Suppose not; then for some h and for some p' with $p\mathcal{R}p', p' \Vdash [\![h \in a]\!]$ and $p' \Vdash [\![\neg(h \in b)]\!]$ (\mathbf{P}_9 , Page 226). By item 1, for some p'' with $p'\mathcal{R}p'', p'' \Vdash [\![h \approx \hat{n}]\!]$ and $p'' \Vdash [\![\hat{n} \in a]\!]$ for some $n \in \omega$. Let q be an arbitrary member of \mathcal{G} with $p'\mathcal{R}q$. Then $q \Vdash [\![\hat{n} \in a]\!]$, hence $\langle q, \hat{n} \rangle \in b$, and so $q \Vdash \hat{n} \varepsilon b$. Since q was arbitrary, $p'' \Vdash \Box(\hat{n} \varepsilon b)$, and so $p'' \Vdash \Box \Diamond(\hat{n} \varepsilon b)$, or $p'' \Vdash [\![\hat{n} \varepsilon b]\!]$. Then $p'' \Vdash [\![\hat{n} \in b]\!]$ (Corollary 2.4, Chapter 17). But we also have $p'' \Vdash [\![\neg(\hat{n} \in b)]\!]$, and this is our contradiction.
- 4. $p \Vdash [\![b \subseteq a]\!]$. Again the proof is by contradiction. If not, then for some h and for some p' with $p\mathcal{R}p'$, $p' \Vdash [\![h \in b]\!]$ and $p' \Vdash [\![\neg(h \in a)]\!]$. Then for some p'' with $p'\mathcal{R}p''$, $p'' \Vdash h \in b$ and hence for some k, $p'' \Vdash [\![h \approx k]\!]$ and $p'' \Vdash [\![k \in b]\!]$. Then for some p''' with $p'\mathcal{R}p'', p'' \Vdash h \in b$ and hence for some k, $p'' \Vdash [\![h \approx k]\!]$ and $p'' \vdash [\![k \in b]\!]$. Then for some p''' with $p'\mathcal{R}p''', p'' \Vdash h \in b$ and hence for some k, $p'' \Vdash [\![h \approx k]\!]$ and $p'' \vdash [\![k \in b]\!]$. Then for some $p''' \mapsto [\![n \in a]\!]$ (definition of b). But then $\langle p''', k \rangle \in b$, and so $k = \hat{n}$ for some $n \in \omega$, and $p''' \Vdash [\![n \in a]\!]$ (definition of b). We also have $p'' \Vdash [\![h \approx \hat{n}]\!]$, and it follows that $p''' \Vdash [\![\neg(\hat{n} \in a)]\!]$, a contradiction.

Additional changes resulting from the correction described above.

Page 264, second paragraph should begin: "Let $C = \{a \mid a \subseteq \mathcal{G} \times \{\hat{0}, \hat{1}, \ldots\}\}$."

Page 264, last paragraph of the Proof of Lemma 5.2, second sentence. This should begin: "Since $a \subseteq \mathcal{G} \times \{\hat{0}, \hat{1}, \ldots\}$...".

Page 265, paragraph following Proposition 5.5. This should read: "We are finished investigating $\mathcal{P}(\mathcal{G} \times \{\hat{0}, \hat{1}, \ldots\})$ and its subset C_0 .

Page 272 (Problem found by Grigori Mints). The proof of Proposition 20.4.1 begins by noting that $f \in g$ and $\llbracket f \in g \rrbracket$ are equivalent. This is not the case, see correction to Page 228. However, the atomic case is still straightforward. For $f, g \in \mathcal{D}^G_{\mathfrak{F}}$, $p \Vdash f \in g$ if and only if $p \Vdash_{\mathfrak{F}} f \in g$ for every p, by the definition of $\Vdash_{\mathfrak{F}}$. It follows that $p \Vdash \Box \Diamond (f \in g)$ if and only if $p \Vdash_{\mathfrak{F}} \Box \Diamond (f \in g)$ for every p.

The following errors and typos were reported by Jonathan Farley.

Page 23, line 17 "aet" should be "set"

- Page 25, line 14 "A2" should be "A5"
- Page 30, line 19 "qualify" should be "qualify"

- **Page 38, line 2** It is true as written, but " $y \subset x$ " should be " $y \subseteq x$ "
- Page 40, line 11 "bounded" should be "non-empty bounded"
- Page 44, line 15 Do we know c is a set? Response: standard mathematical practice treats this as a set, but technically it is not justified until the Axiom of Substitution is introduced, Ax 8 on page 170.
- Page 49, line 14 "x'Rb'" should be "b'Rx'"
- **Page 49, line 15** " $x \le b$ " should be " $b \le x$ "
- Page 58, line -2 "M" should be "N"
- Page 59, line -5 "M" should be "S"
- **Page 60, line -8** "N should be " $\cup N$ "
- **Page 60, line -5** (Further corrected by Rolf Rolles) This should read "Every successor element of N is F(a) for some $a \in \bigcup N$."
- **Page 60, Exercise 4.3** Delete this exercise. Here is a counter-example. Take any set x, and consider $S = \{x\}$. The axiom of choice is not needed to say S has a choice function, but $\cup S = x$, and this need not have a choice function
- Page 62, line 9 The semicolon should be a comma
- **Page 62, Lemma 5.4** Add the assumption that $A \neq \emptyset$
- Page 62, line -2 "5.3" should be "5.2"
- Page 63, line 5 Exercise 4.3 has been deleted
- Page 63, line 7 After "denumerable" add "or finite"
- Page 64, line -9 Before "set of finite character" insert "non-empty"
- **Page 66** It would have helped to point out at the beginning of $\S7$ that g is defined on all sets
- Page 73, line 3 "10.2" should be "10.3"
- **Page 79, following Definition 1.1** Should begin, "In general, $F(x) \neq F''(x)$ "
- **Page 79, Second paragraph following Definition 1.1** Should contain "whereas F''(x) is"
- **Page 80, line 2** Add that φ_2 is 1-1
- Page 80, proof of Proposition 1.3, second line "L" should be " $L_{<}$ "
- Page 80, line -2 "onto" should be "into"
- Page 88, line -7 "isomporphic" should be "isomorphic"
- **Page 89, Theorem 6.1** This should begin "For any functions f(x), g(x) on ordinals, and any function h(x, y, z), where y and z are ordinals, ...
- Page 93, O_6 "Since x" should be "Since S"

Page 97, last line of Proof of Q₄ "has rank $< \alpha$ " should be "has rank $\le \alpha$ "

- Page 97, line -8 "mathbbF" should be " \mathbb{F} "
- Page 99, next to last line of Example "every subclass" should be "every non-empty subclass"
- Page 99, line -14 "Zermelo Fraenkel" needs a hyphen
- **Page 101, line -16** "x of A" should be "x of A B"
- Page 102, line -6 "set" should be "class"
- Page 306, Tarski, A. (1955) "lattice-theoretical theorem" should be "lattice-theoretical fixpoint theorem"

The following corrections are due to Fausto Barbero.

- **Page 104** In the proof of Theorem 4.6, it should be y = g''x, not y = g(x).
- **Page 116** This is not actually a correction, but an elucidation. The second paragraph on the page, concluding $A \cong A \times A$ from $M \cong A$ and $M \cong M \times M$, does not look obvious at all to me. I give a short proof.

First, we observe that $A \times A \cong [(A \setminus M) \cup M] \times [(A \setminus M) \cup M] = [(A \setminus M) \times (A \setminus M)] \cup [(A \setminus M) \times M] \cup [M \times (A \setminus M)] \cup [M \times M]$. But $M \cong A$ implies $A \setminus M \preceq M$. Using this injection, it is immediate to prove that each of $[(A \setminus M) \times (A \setminus M)], [(A \setminus M) \times M]$ and $[M \times (A \setminus M)]$ is $\preceq M \times M$. Then, using the law of additive absorption (Thm 6.2) in the first equation, $A \times A \cong M \times M \cong M \cong A$.

- **Page 123** In the first line of the proof of Proposition 9.8, instead of c there should be x.
- **Page 124** Line -3: instead of $z = y \cup \omega$ it should be $z = \mathcal{P}(y \cup \omega)$.
- **Page 132** Subsection "A-ranks", third line: instead of $p(x) \cap A$ it should be $\mathcal{P}(x) \cap A$.
- **Page 133** Last line on page: instead of $F_{\alpha}(y)$ it should be $f_{\alpha}(y)$.
- **Page 139** Proof of 6.7, first line: "Let $A \dots$ " should be "Let $A_0 \dots$ ".
- **Page 144** Paragraph beginning "One of the early major results...," the reading should be "... if φ is satisfiable in any INFINITE relational system at all, then it is satisfiable in a denumerable relational system" (remember that "denumerable" means having cardinality ω).

Page 153

- Line 4 of (4): instead of w_n , it should be W.
- Lines 17, 19 and -7 of (4): terms of the form $\cup \Gamma''(w_i)$ are used, but they are not well defined, since Γ is an *n*-ary function. Could one use $\cup \Gamma''(w_i, \ldots, w_i)$ instead?
- Not an error, but it is worth noting that n is used for two distinct purposes in this proof.

Page 163 The formula (29) seems incorrect, because it should involve two (in general) distinct pairs $\langle x_1, x_2 \rangle$, $\langle x_1, x_3 \rangle$, but this is not possible if x_1, x_2, x_3 are all extracted from members of one and the same z (remember that z should be one of the pairs that constitute the function x). The correct prefix of the formula should be:

$$(\forall z_1 \in x)(\forall z_2 \in x)(\forall w_1 \in z_1)(\forall w_2 \in z_2)(\forall x_1 \in w_1)(\forall x_2 \in w_1)(\forall x_3 \in w_2)$$

Page 167 I have the impression that the formula used to define $L^n \cap c$ is based on the (generally wrong) assumption that $L^n \cap c$ is transitive. It should be replaced by $x \in c \land (\exists x_1 \in c)(\exists x_2 \in c))$ $(d = x_1, \ldots, x_n)$, where $y \in c$ abbreviates

$$\exists y_1 \dots \exists y_{k-1} (y \in y_1 \land y_1 \in y_2 \land \dots \land y_{k-1} \in z).$$

- **Page 170** It is not specified anywhere that the axioms are the universal closures of the indicated formulas. Furthermore, in Axiom 2, $\varphi(x, y_1, \ldots, y_n)$ should be replaced (twice) by $\varphi(y, y_1, \ldots, y_n)$.
- Page 176 Proof of 3.4: replace "non-empty member of L" with "non-empty member a of L".
- **Page 183** A further lemma needed to show that formulas stay Σ if the symbol \uparrow is used.
- **Page 186** In clause (0) there are two occurrences of substitution of a set inside a term; but this has not (yet) been defined.
- **Page 187** In the definition of x(y) = z just before Proposition 3.9, " $\varphi(y) = z$ " should be replaced by " $\varphi(y)$ = the formula whose code is z". In "Valuations and truth", the index j is introduced but never used.
- **Page 189** Line 13, twice: replace "absolute" with "absolute over L". However, the same argument (and thus Theorem 4.1) should work for any first-order universe. Indeed, on **Page 190**, line -9, Theorem 4.1 is applied to a generic first-order universe K.
- **Page 196** I think condition C_1 should be $K_0 = \emptyset$. Otherwise it would be impossible that $\pi''(K_0) = L_0$, as claimed in Exercise 2.1. In condition C_3 , $\alpha < \delta$ should appear as an index.
- Page 210 Line -3: The exclamation mark is unintentional.
- Page 217 Before Prop. 4.4: The last occurrence of "than" should be "them".
- Page 219 Line 3: The argument also uses the Converse Barcan Formula.
- **Page 242** Most likely, the proof of 6.1 should begin " $u = \{q, a\}$ " and " $v = \{q', b\}$ ".
- **Page 256** Proof of Lemma 6.1, penultimate paragraph: "Then both...": this is not really an error, but the existence of a common p' satisfying both the conditions described is not straightforward as the text seems to imply. I think one should proceed as follows: from the fact that $p \Vdash [\![(\exists y)(y \text{ is } f(\hat{\gamma}_1) \land y \in s)]\!]$ and $p \Vdash [\![(\exists y)(y \text{ is } f(\hat{\gamma}_2) \land y \in s)]\!]$ we get (by Prop. 4.3 (3)) that $p \Vdash [\![(\exists y)(y \text{ is } f(\hat{\gamma}_1) \land y \in s) \land (\exists y)(y \text{ is } f(\hat{\gamma}_2) \land y \in s)]\!]$. Then, applying prenex transformations, we obtain that $p \Vdash [\![(\exists y)(\exists y')((y \text{ is } f(\hat{\gamma}_1) \land y \in s) \land (y' \text{ is } f(\hat{\gamma}_2) \land y' \in s))]\!]$. Applying twice the embedding property \mathbf{P}_{11} , we obtain p', a, b such that $p' \Vdash [\![(a \text{ is } f(\hat{\gamma}_1) \land a \in s) \land (b \text{ is } f(\hat{\gamma}_2) \land b \in s)]\!]$. Using once more Prop. 4.3 (3) we obtain the desired conclusion.

- **Page 257** In order to account for the special case CH, in both centered formulas of the proof of 6.2 " $\hat{\omega} \in \alpha$ " should be replaced by " $\hat{\omega} \in \alpha \lor \hat{\omega} \approx \alpha$ ".
- **Page 260** Two lines before the "Exercises": instead of ω it should be $\hat{\omega}$.

Page 299 Line -12: "computibility" should be "computability".