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1 Pre-bilattices

This is probably more than you need to know, but the material is rather straightforward. If you are
unfamiliar with the notion of a lattice, a good example to keep in mind is all the subsets of some
set, with ⊆ as the ordering relation. All lattices I consider will have tops and bottoms—largest
and smallest elements. (For the set example, the top is the entire set, and the bottom is the empty
set.) To keep terminology simple, in everything that follows the term lattice means lattice with a
top and a bottom.

If you are not familiar with the terminology, in a lattice the greatest lower bound and the
least upper bound of two-element sets is required to exist (and hence also for any finite set). The
greatest-lower-bound operation is usually called meet and the least-upper-bound operation is called
join. Lattice meet and join operations are always commutative and associative. Requiring a top
and a bottom amounts to saying there is an element bigger than all others and an element smaller
than all others.

Definition 1.1 A pre-bilattice is a structure B = 〈B,≤t,≤k〉 in which B is a non-empty set and
≤t and ≤k are partial orderings each giving B the structure of a lattice.

Think of the members of B as pieces of information that are act as truth values in some
generalized sense. It is to deal with this dual role, information and degree of truth, that we have
the two ordering relations.

The ordering ≤k should be thought of as ranking “degree of information”. Thus if x ≤k y, y
gives us at least as much information as x (and possibly more). I suppose this really should be
written as ≤i, using i for information instead of k for knowledge, but k has become standard. The
meet and join operations for ≤k are denoted ⊗ and ⊕. The ⊗ operation is called consensus: x⊗ y
is the most information that x and y agree on. The ⊕ operation is called gullability—a person who
is gullable will believe anything. Then x ⊕ y should be thought of as combining the information
in x with that in y, without worrying about whether the pieces fit together or not. The bottom
in the ≤k ordering is denoted by ⊥ and the top by >. Think of ⊥ as representing the state of
complete ignorance—no information. Likewise > represents full information, possibly including
inconsistencies.

The relation ≤t is an ordering on the “degree of truth.” The bottom in this ordering will be
denoted by false and the top by true. Thus false ≤t x ≤t true for any x ∈ B. The meet and join
operations for ≤t will be denoted by ∧ and ∨. It is easy to check that when restricted to false and
true, these obey the usual truth-table rules. It is also easy to check that when restricted to false,
⊥ and true they obey the rules of Kleene’s strong three-valued logic (this works equally well if we
restrict to false, > and true, but it is better to think of this as a version of Priest’s logic LP).
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In a lattice, meets and joins of finite sets must exist. What is called a completeness assumption
extends this to infinite sets as well. Completeness is needed to adequately interpret quantifiers.
Here is the bilattice version of completeness.

Definition 1.2 A pre-bilattice 〈B,≤t,≤k〉 is complete if all meets and joins exist, with respect to
both orderings. I’ll denote infinitary meet and join with respect to ≤t by

∧
and

∨
, and by

∏
and∑

for the ≤k ordering.

1.1 Examples

Suppose we have a certain group of people, P, whose opinions we value. If we ask these people
about the status of a sentence X, some will call it true, some false. But also, some may decline to
express an opinion, and some may be uncertain enough to say they have reasons for calling it both
true and false. We can, then, assign X a kind of generalized truth value, 〈P,N〉, where P is the
set of people in P who say X is true and N is the set who say it is false. As just noted, we do not
require that P ∪N = P, nor that P ∩N = ∅.

Orderings can be introduced into our people-based structure: set 〈P1, N1〉 ≤k 〈P2, N2〉 if P1 ⊆ P2

and N1 ⊆ N2, and set 〈P1, N1〉 ≤t 〈P2, N2〉 if P1 ⊆ P2 and N2 ⊆ N1 (note the reversal here). Thus,
information goes up if more people express a positive or negative opinion, and truth goes up if people
drop negative opinions or add positive ones. This gives us the structure of a pre-bilattice. In it, for
example, 〈P1, N1〉 ∧ 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∪ N2〉, and 〈P1, N1〉 ⊗ 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∩ N2〉.
Reflection should convince you that these are quite natural operations. Also, ⊥ = 〈∅, ∅〉, > =
〈P,P〉, false = 〈∅,P〉, and true = 〈P, ∅〉. You should reflect on these too.

As another example, consider a “fuzzy” truth value space, in which truth values are pairs 〈p, n〉
of real numbers in the interval [0, 1], where p is “degree of belief,” and n is “degree of doubt.”
Appropriate orderings for this example are 〈p1, n1〉 ≤k 〈p2, n2〉 if p1 ≤ p2 and n1 ≤ n2; and
〈p1, n1〉 ≤t 〈p2, n2〉 if p1 ≤ p2 and n2 ≤ n1.

The two examples above can be combined if we consider a collection of people, each of whom
has “fuzzy” opinions. I won’t follow up on this—you probably get the general idea.

Figure 1 shows the simplest non-trivial example of a pre-bilattice: only the four extreme el-
ements exist and are distinct. It can be thought of as a special case of the people pre-bilattice
above, in which there is only one person. This is a fundamental example, and originated before
bilattices as such arose—it is the four-valued logic due to Belnap, [1, 2], and will be called FOUR
here. Think of the left-right direction as characterizing the ≤t ordering: a move to the right is
an increase. The meet operation for the ≤t ordering, ∧, is then characterized by: x ∧ y is the
rightmost thing that is left of both x and y. The join operation, ∨ is dual to this. In a similar
way the up-down direction characterizes the ≤k ordering: a move up is an increase in information.
x⊗ y is the uppermost thing below both x and y, and ⊕ is dual. Spatial conventions like these will
be used throughout.

Figure 2 shows a pre-bilattice in which subtler distinctions can be registered. As is also the case
with FOUR, ⊥ represents a state of complete ignorance, and > one of information overload—solid
evidence has been supplied both for and against some proposition. Likewise false represents the
situation in which we have convincing evidence against some proposition, and no evidence in its
favor, while true is just the opposite. But in Figure 2 there are two more states. Think of fd as
a state in which we have no evidence in favor of a proposition, but we have some weak evidence
against—read fd as “false with doubts.” Think of td likewise as “true with doubts.”
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Figure 1: The Bilattice FOUR

1.2 Bilattices

A pre-bilattice has two orderings, with no postulated connections between them. I’ll reserve the
term bilattice for pre-bilattices where there are useful connections between orderings. Ginsberg’s
original definition of bilattice postulated a connection through a negation operation. Here I will
use stronger notions that also trace back to Ginsberg, [8].

Definition 1.3 A pre-bilattice 〈B,≤t,≤k〉 is:

1. an interlaced bilattice if each of the operations ∧, ∨, ⊗, and ⊕ is monotone with respect to
both orderings (the interlacing conditions);

2. an infinitarily interlaced bilattice if it is complete and all four infinitary meet and join oper-
ations are monotone with respect to both orderings;

3. a distributive bilattice if all 12 distributive laws connecting ∧, ∨, ⊗, and ⊕ are valid;

4. an infinitarily distributive bilattice if it is complete and infinitary, as well as finitary, distribu-
tive laws are valid. Examples of infinitary distributive laws are: a ∧

∑
i bi =

∑
i(a ∧ bi), and

a⊗
∧

i bi =
∧

i(a⊗ bi).

A lattice is called distributive if it satisfies distributive laws; for example, a pre-bilattice is a
lattice with respect to the ≤k ordering, and this lattice is distributive if x⊗(y⊕z) = (x⊗y)⊕(x⊗z)
and x⊕ (y⊗z) = (x⊕y)⊗ (x⊕z) holds. Saying a pre-bilattice is distributive requires that we have
distributive lattices with respect to both orderings and, in addition, we have “mixed” distributive
laws, such as x⊗(y∨z) = (x⊗y)∨(x⊗z). All examples from Section 1.1 are distributive bilattices,
and infinitary distributivity is satisfied as well.

In a lattice, meet and join operations are always monotone with respect to the lattice ordering.
Thus we always have that x1 ≤t y1 and x2 ≤t y2 implies (x1 ∧ y1) ≤t (x2 ∧ y2). Saying we have an
interlaced bilattice adds to this the requirement that monotonicity also work “across” orderings;
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Figure 2: A Six-Valued Bilattice

for example x1 ≤k y1 and x2 ≤k y2 implies (x1 ∧ y1) ≤k (x2 ∧ y2). It is not hard to show that every
(infinitarily) distributive bilattice is also (infinitarily) interlaced, hence the examples of Section 1.1
satisfy the interlacing conditions.

1.3 Negation and Conflation

Some bilattices have natural symmetries, and these can be used to characterize interesting subsys-
tems.

Definition 1.4 A bilattice has a negation operation if there is a mapping, ¬, that reverses the ≤t

ordering, leaves unchanged the ≤k ordering, and ¬¬x = x. Likewise a bilattice has a conflation
operation if there is a mapping, −, that reverses the ≤k ordering, leaves unchanged the ≤t ordering,
and −− x = x. If a bilattice has both operations, they commute if −¬x = ¬ − x for all x.

In the people example of Section 1.1, there are natural notions of negation and conflation.
Take ¬〈P,N〉 to be 〈N,P 〉—the roles of for and against are switched. And take −〈P,N〉 to be
〈P − N,P − P 〉, where P is the set of people. This amounts to a kind of switching to a default
position—the people who affirm under a conflation are the people who originally did not deny,
for instance. The “fuzzy” example has a similarly defined negation and conflation—I’ll leave their
formulation to you. For both examples, negation and conflation commute.

In the example of Figure 1, there is a negation operation under which ¬true = false, ¬false =
true, and ⊥ and > are left unchanged. There is also a conflation under which −⊥ = >, −> = ⊥
and true and false are left unchanged. In this example negation and conflation commute. In any
bilattice, if a negation or conflation exists the behavior on the extreme elements ⊥, >, false, and
true will be as it is in FOUR.

The example of Figure 2 does not have either a negation or a conflation. One might, for
instance, try introducing a negation by adding to the usual conditions for the extreme elements the
requirement that ¬td = fd and ¬fd = td, but this will not work. We have fd ≤k false and negation
is required not to affect the ≤k ordering, so we should have td ≤k true, but in fact we have the
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opposite. There is a deeper reason for the lack of conflation and negation in this example that will
become clear in the next section.

Definition 1.5 Suppose B is a bilattice with a conflation operation. Call x ∈ B exact if x = −x
and consistent if x ≤k −x.

In the bilattice example involving people, Section 1.1, the exact values are those 〈P,N〉 where
N is the complement of P—everyone expresses an unambiguous opinion. The consistent values are
those where P ∩N = ∅, that is, people may be undecided, but they are never contradictory. In the
bilattice FOUR of Figure 1, the exact members are {false, true}, the classical truth values, and
the consistent ones are {false,⊥, true}, which behave like the values of Kleene’s strong three-valued
logic, with respect to ¬, ∧, and ∨. This phenomenon, in fact, is not uncommon. The exact part of a
complete bilattice with commuting conflation and negation is always closed under ¬, ∧, and ∨, and
similarly for the consistent part. In addition, the consistent part will always be closed under the
infinitary version of ⊗, and under the infinitary version of ⊕ when applied to a directed set. It is
essentially these conditions that were used in [4] for the special case of Kleene’s strong three-valued
logic, but in fact they obtain much more generally.

2 Constructing Bilattices

There are several ways of constructing bilattices that also provide some intuition concerning them.
Only one is discussed here. It traces back to [9] with extensions of mine, though underlying ideas
actually go back somewhat earlier.

Suppose we have notions of positive and negative evidence. For instance, positive evidence for
a mathematical conjecture might consist of plausibility arguments, computer experiments, almost
correct proofs, and so on. Actual proofs would be best possible, of course. Negative evidence
might also consist of various informal arguments, with counter-examples as best possible. Let us
say we have a way of ranking evidence—this piece is better than that. More formally, say we have
two lattices, L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉, where members of L1 are things that can serve
as positive evidence, with ≤1 as a comparison relation, and similarly for L2 as pieces of negative
evidence. The lattices need not be the same.

Definition 2.1 A bilattice product L1 � L2 is the structure 〈L1 × L2,≤t,≤k〉 where:

1. 〈x1, x2〉 ≤t 〈y1, y2〉 if x1 ≤1 y1 and y2 ≤2 x2

2. 〈x1, x2〉 ≤k 〈y1, y2〉 if x1 ≤1 y1 and x2 ≤2 y2

Think of a member 〈x, y〉 of L1 × L2 as encoding evidence about some assertion: evidence for, x,
and evidence against, y. Then an increase in information amounts to saying evidence in general
goes up. An increase in truth says evidence for increases while evidence against decreases. Earlier
examples concerning people and “fuzzyness” are both special cases of this construction.

It is straightforward to show that L1 � L2 is always an interlaced bilattice, and is complete if
both L1 and L2 are complete as lattices. And further, if both L2 and L2 are distributive lattices,
L1 � L2 will be a distributive bilattice.

If L1 = L2 then a negation operaton can be introduced into L1�L2. Set ¬〈x, y〉 = 〈y, x〉. That
is, negation switches the roles of positive and negative evidence. Next, suppose L1 = L2 = L has
what is called a de Morgen complement operation, an operation that maps x to x such that x ≤ y
implies y ≤ x, and x = x. Then a conflation operation can also be introduced into the bilattice
product: set −〈x, y〉 = 〈y, x〉. Defined these ways, negation and conflation will commute.
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The machinery just set forth for constructing various kinds of bilattices is completely general.
That is, every distributive bilattice is isomorphic to L1 � L2 for some distributive lattices L1 and
L2, and similarly for the other cases. Proof can be found for the various parts of this family of
results in [9, 5, 6, 7]. In a way the result is a descendant of the Polarities Theorem of Dunn, [3].

Consider the familiar lattice B whose carrier is {false, true}, with false < true. This is a
distributive lattice for which the operation false = true and true = false is a de Morgen complement.
Then B�B is a distributive bilattice with a negation and a conflation. It is, in fact, isomorphically
the bilattice FOUR of Figure 1. Further, let C be the lattice whose carrier is {0, 12 , 1}, ordered
numerically. Then B � C is isomorphically the bilattice of Figure 2. Since B and C are different,
there is no negation or conflation. But since both are distributive lattices, B � C is a distributive
bilattice.

3 Kleene’s strong three-valued logic generalized

Kleene’s strong three-valued logic has probably been the most popular of the various logics used in
Kripke’s approach to self-reference. In this logic, for instance, true ∨ ⊥ = true, informally because
if we get enough further information about the second component of the disjunction to assign it a
classical truth value, whether we find that component to be true or false we would still evaluate
the disjunction to true, so extra information is not really relevant—we can assign true right now.
Because of the nature of bilattices, this is the simplest partial logic for us to generalize. Let v be
a valuation, an assignment of values in B to atomic sentences. This extends to a mapping on all
sentences. I’ll denote this extension by vs; the superscript is for “strong”.

1. vs(T (t)) = v(T (t)).

2. vs(X ∧ Y ) = vs(X) ∧ vs(Y )

3. vs(X ∨ Y ) = vs(X) ∨ vs(Y )

4. vs(¬X) = ¬vs(X)

In item 2 the occurrence of ∧ on the left is syntactic—it is a symbol of the language; the occurrence
of ∧ on the right denotes the meet operation of B with respect to the ≤t ordering. Similar remarks
apply to 3 and 4 as well.

4 Kleene’s weak three-valued logic generalized

Kleene’s weak three-valued logic assigns a value of ⊥ to any compound formula in which some
part has been assigned ⊥. Thus, for instance, true ∨ ⊥ = ⊥, which is a different outcome than we
get in Kleene’s strong three-valued logic. The weak logic too can be generalized to the bilattice
setting—[6] proposes an approach, but here I follow a different one. For motivation, consider once
again the bilattice example based on people, from the beginning of Section 1.1. Suppose we have
two bilattice values, A = 〈P1, N1〉 and B = 〈P2, N2〉, where the Pi and Ni are sets of people, those
expressing opinions for, and against, respectively. Of course A∧B was defined earlier, but suppose
we want to ‘cut this down’ by only considering people who have actually expressed an opinion on
both propositions A and B. As far as A is concerned, A ⊕ ¬A = 〈P1 ∪ N1, P1 ∪ N1〉, and taking
the consensus, ⊗, of this with an arbitrary member of the people bilattice does, indeed, cut things
down to those who have expressed an opinion concerning A. Similarly for B. To keep notational
clutter down, suppose I write ‖X‖ for X ⊕ ¬X, so what we want for a ‘cut down’ conjunction is
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(A∧B)⊗‖A‖⊗‖B‖. We can do a similar thing with disjunction, of course. Negation is somewhat
simpler since ¬A⊗ ‖A‖ = ¬A, so we can avoid extra complication in this case.

This suggests we define the following operators for any complete bilattice with negation. The
superscript w is for “weak,” and in fact, confined to the consistent part of the bilattice FOUR,
they are the connectives of Kleene’s weak three-valued logic.

1. X ∧w Y = (X ∧ Y )⊗ ‖X‖ ⊗ ‖Y ‖

2. X ∨w Y = (X ∨ Y )⊗ ‖X‖ ⊗ ‖Y ‖

Once again let v be a valuation in B; I’ll extend it to a mapping vw on all sentences as follows.

1. vw(T (t)) = v(T (t)).

2. vw(X ∧ Y ) = vw(X) ∧w vw(Y )

3. vw(X ∨ Y ) = vw(X) ∨w vw(Y )

4. vw(¬X) = ¬vw(X)
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