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Background
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Justification Logics are like modal logics,
except they involve explicit reasoning

within the language itself.

You will see examples shortly.

Let’s start with some history.
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Intuitionistic logic
was intended to be constructive.

And it is, in a precise sense.

The Brouwer, Heyting, Kolmogorov
(BHK)

semantics has a constructive flavor.
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It is based on
an abstract notion of proof.

A proof of X ^ Y consists of
a proof of X and a proof of Y .

A proof of X � Y consists of
an algorithm converting any proof of X

into a proof of Y .

? has no proof.

A proof of X _ Y consists of
a proof of X or a proof of Y .
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In 1933 Gödel made a first step.

But, what is a proof?

Can this be given an
arithmetic interpretation?

One can can characterize
intuitionistic “truth”

using classical validity plus
informal provability.
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Gödel proposed that
informal provability should

meet the following conditions
(writing ⇤X for X is “provable”).

This is the well-known modal logic S4.

classical tautologies
⇤(A � B) � (⇤A � ⇤B)

⇤A � A
⇤A � ⇤⇤A

` A and ` A � B implies ` B
` A implies ` ⇤A
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Translate intuitionistic formulas
by putting ⇤ before every subformula.

For example,
(A ^B) � A

becomes ⇤((⇤(⇤A ^⇤B) � ⇤A)

Then, X is an intuitionistic theorem
if and only if the translate of X

is a theorem of S4.
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Gödel was an expert on
embedding logic into arithmetic.

He noted that S4
does not embed into arithmetic.

At least not by using
his provability predicate

(9y)(y is the Gödel number of a proof of x)
to interpret ⇤.
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In 1938 Gödel had another proposal,
interpret ⇤ as explicit provability.

(This moves the existential quantifier to the metalevel.)

This was not published during Gödel’s lifetime.

The idea was independently rediscovered
by Sergei Artemov in the 1990’s.
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Artemov introduced a logic LP
(logic of proofs)

We will see the details shortly.

It is a kind of explicit modal logic.

This will mean something shortly.



The Basic Picture
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Int ,! S4 ,! LP ,! Arith

Gödel’s
translation

Arithmetic
Embedding
Theorem
(Artemov)

Realization
Theorem
(Artemov)

Intuitionistic logic has an arithmetic interpretation.



The Basic Picture
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Int ,! S4 ,! LP ,! Arith

Realization
Theorem
(Artemov)

What we concentrate on.



And what is LP?
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The really new things are
proof terms

(now usually called
justification terms)
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Variables, v1, v2, . . . are proof terms.

Constant symbols, c1, c2, . . . are proof terms.

If t and u are proof terms, so are t + u and t · u.

If t is a proof term, so is !t.
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Formulas are built up from
propositional letters, P , Q, . . . , and ?.

Using �
and maybe other connectives.

And, if t is a proof term,
and X is a formula, t:X

is a formula.

Think of t:X as asserting:
X is so, with t as a proof,
or t is a justification for X.
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The informal ideas:

t · u justifies X whenever
u justifies some formula Y ,

and t justifies Y � X.

t + u justifies X whenever
t justifies X,

or u justifies X.

If t justifies X,
!t justifies that fact.
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Constants justify formulas that
we do not further analyze;

that is, axioms.

Variables stand for
arbitrary justifications.



LP Axioms
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A0. Classical Tautologies
A1. Application t:(X � Y ) � (s:X � (t·s):Y )
A2. Factivity t:X � X
A3. Justification Checker t:X � !t:(t:X)
A4. Weakening s:X � (s+t):X

t:X � (s+t):X



LP Rules
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R1. Modus Ponens ` Y provided ` X and ` X � Y
R2. Axiom Necessitation ` c:X where X is an axiom A0 – A4

and c is a justification constant.

Note to self: say something about
Constant Specifications.
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What follows is an
abbreviated example

of a proof in LP.
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1. x:P � (x:P _ y:Q)

2. a:(x:P � (x:P _ y:Q)) using axiom nec.

3. a:(x:P � (x:P _ y:Q)) � (!x:x:P � [a·!x]:(x:P _ y:Q))

4. !x:x:P � [a·!x]:(x:P _ y:Q)

5. x:P �!x:x:P

6. x:P � [a·!x]:(x:P _ y:Q)

7. y:Q � [b·!y]:(x:P _ y:Q) similarly

8. x:P � [a·!x + b·!y]:(x:P _ y:Q) weakening

9. y:Q � [a·!x + b·!y]:(x:P _ y:Q) similarly

10. (x:P _ y:Q) � [a·!x + b·!y]:(x:P _ y:Q)
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So we have
(x:P _ y:Q) � [a·!x + b·!y]:(x:P _ y:Q)

where a justifies the tautology
x:P � (x:P _ y:Q)

and b justifies the tautology
y:Q � (x:P _ y:Q)



Internalization
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We have that
if X is an axiom,

a:X for some constant a.

In fact, if X is a theorem,
t:X for some justification term t.

The structure of t
internalizes the proof of X.



What is Realization?

 24

For any LP formula X
let X� be the result of

replacing every justification term
with ⇤.

This is the
forgetful functor.
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If X is an LP theorem,
X� is an S4 theorem.

True for axioms.

For example,
s:(X � Y ) � (t:X � [s · t]:Y )

becomes
⇤(X � Y ) � (⇤X � ⇤Y ).
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The rules preserve
this property.

That’s all there is
to this.

But a converse also holds!
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If X is a theorem of S4,
there is a theorem Y of LP

so that Y � = X.

Better yet, Y can have
distinct justification variables

where X has negative ⇤.

Positive ⇤ occurrences become
terms computed from these variables.

There is a kind of
input/output structure to S4 theorems.
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This is called a
normal realization.

For example, the S4 theorem
(⇤P _⇤Q) � ⇤(⇤P _⇤Q)
has the normal realization

(x:P _ y:Q) � [a·!x + b·!y]:(x:P _ y:Q).

Realizations are not unique.
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S4 can be thought of as
a logic of knowledge

(with positive introspection).

Then
(KP _KQ) � K(KP _KQ)

says something about our
implicit knowledge.



 30

(x:P _ y:Q) � [a·!x + b·!y]:(x:P _ y:Q)
makes reasoning about our knowledge

explicit.

If we have a reason for one of P or Q
here is how to go about

verifying that fact.



It’s a Family!
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I’ve talked about
modal S4 and justification LP.

But it turns out that
a large number of modal logics
have justification counterparts.
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Then counterparts are connected
via realization theorems.

Examples are K, T, D, K4, D4.

Since these are sublogics of S4,
one just omits parts of the

S4 and LP machinery.
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S5 was an early example
that needed new justification machinery.

But recently I’ve realized,
the family of modal logics

with justification counterparts
is very big.
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Let’s look at S4.2 as an example.

Axiomatically, add to S4,
⌃⇤X � ⇤⌃X
or equivalently,

⇤¬⇤X _⇤¬⇤¬X
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Semantically, use S4 frames
that are convergent.

uRv1 and uRv2 implies
there is some w with
v1Rw and v2Rw.



 36

For a justification counterpart,
add to LP two new function symbols,

and the axiom
f(t, u):¬t:X _ g(t, u):¬u:¬X

Here’s an informal
plausibility argument.

Let’s call this logic J4.2
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¬t:X _ ¬u:¬X
is provable in LP.

In any context one of the disjuncts must hold.

f(t, u):¬t:X _ g(t, u):¬u:¬X
says we can compute a justification for

whichever does hold.
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J4.2 realizes S4.2

For example, here is an S4.2 theorem:
[⌃⇤A ^ ⌃⇤B] � ⌃⇤(A ^B)

Or equivalently,

[¬⇤¬⇤A ^ ¬⇤¬⇤B] � ¬⇤¬⇤(A ^B)
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It is realized by

{¬[j4 · j3·!v5 · g(!v3, j2 · v5·!v9)]:¬v9:A^
¬[j5 · f(!v3, j2 · v5·!v9)]:¬v3:B} � ¬v5:¬[j1 · v9 · v3]:(A ^B)

where:

j1:{A � (B � (A ^B))}
j2:{¬[j1 · v1 · v3]:(A ^B) � (v1:A � ¬v3:B)}
j3:{v5:¬[j1 · v1 · v3](A ^B) � {¬[j2 · v5 · v2]:¬v3:B � ¬[v2 · v1]:A}}
j4:{¬!v9:v9:A � ¬v9:A}
j5:{¬!v3:v3:B � ¬v3:B}



Realization
How Proved?
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There are many different proofs of Realization.

I prefer a two-stage version.
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Stage 1: produce a quasi-realization 
from a modal validity.
Stage 2: convert the quasi-realization 
to a realization.

Sometimes constructive.
Needs a cut-free modal 

proof procedure.
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Stage 1: produce a quasi-realization 
from a modal validity.
Stage 2: convert the quasi-realization 
to a realization.

Always constructive.
Algorithm is independent of 

the particular logic.
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Algorithms for quasi-realizations need:

A formal proof in a proof system that
1. has the subformula property
2. preserves subformula polarity
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What has worked so far:
1. Sequent calculus
2. Tableaus
3. Nested Sequents
4. Prefixed tableaus
5. Hypersequents
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Many modal logics don’t have such proof systems.
(Or so it seems.)

There is also a semantic proof of quasi-realization.
This is not constructive.
But it is more general.

I’ll sketch the idea.



Modal Models
(very familiar)
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M = hG,R,Vi

frame
atomic truth
assignment

M,� � ⇤X if
M,� � X whenever

�R�



Justification Models
(Fitting Models)
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M = hG,R, E ,Vi

Evidence function

Note to self: please explain!
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� 2 E(t, X)

� is a world at which
t is relevant evidence

for X.

E(t, X) \ E(s, X � Y ) ✓ E(s · t, Y )

E(s, X) [ E(t, X) ✓ E(s + t, X)
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M = hG,R, E ,Vi

M,� � t:X if
M,� � X whenever �R�

and
� 2 E(t, X)



For Example
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For LP, corresponding to S4:

Frame is transitive and reflexive.

E is monotonic:

�R�
� 2 E(t, X) =) � 2 E(t, X)
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E(t, X) \ E(s, X � Y ) ✓ E(s · t, Y )

E(s, X) [ E(t, X) ✓ E(s + t, X)

E(t, X) ✓ E(!t, t:X)



Completeness,
how proved
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Axiomatic completeness for justification logics is,
so far,

by a canonical model construction.

Let’s use LP as an example.
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G is all maximally LP consistent sets.

For � 2 G, �] = {X | t:X 2 �}.

�R� if �] ✓ �.

� 2 E(t, X) if t:X 2 �.

� 2 V(X) if X 2 �.
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Now, prove the usual
Truth Lemma.

And show hG,Ri
is an S4 frame:

reflexive and transitive.

Key step.
Justification terms must
“fit together” correctly

for this to happen.



The Current State
of Things
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I’ll describe where
we are so far.

What works for LP and S4
can be generalized.
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Suppose JL is a
candidate for a

justification counterpart.

Suppose ML is a
canonical modal logic.

Suppose the canonical
justification model for JL

is built on a frame for ML.

Then a Realization Theorem
connects ML and JL.



For Example
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Geach formulas,
⌃k⇤lA � ⇤m⌃nA,
where k, l,m, n � 0.

Equivalently,
⇤k¬⇤lA ! ⇤m¬⇤n¬A
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Logics axiomatized using Geach formulas:
D,
T,
B,

K4,
S4,

S4.2,
S5
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Theorem: Any modal logic
axiomatized by Geach formulas

has a justification logic counterpart,
with a connecting Realization theorem.
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My guess is that
this extends to Sahlquist formulas,

but I don’t know yet.

It is clear that
justification logics are a general phenomenon.

How general is only beginning to be clear.

And that’s where things are now.



What’s Missing?
• How do you produce candidates for 

justification counterparts?

• Is there a “best” choice?  (There can be more 
than one.)
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⇤X � ⇤⇤X t:X �!t:t:Xbecomes

t:X �!t:f(t):Xbut why not
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• Are there general conditions for when 
canonical justification models meet their 
modal frame conditions?

• Are there general conditions that say for 
which modal logics all this works for?  
(Sahlqvist perhaps?  Geach certainly!)



And a Whole
New Direction
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There are now
quantified versions of

justification logics.

But this is
quite enough
for tonight.


